Advertisement

Differential Equations

, Volume 41, Issue 2, pp 284–289 | Cite as

The Dynamic Renormalization Method for Finding the Maximum Lyapunov Exponent of a Chaotic Attractor

  • D. S. Glyzin
  • S. D. Glyzin
  • A. Yu. Kolesov
  • N. Kh. Rozov
Numerical Methods

Keywords

Differential Equation Partial Differential Equation Ordinary Differential Equation Functional Equation Lyapunov Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Benettin, G., Galgani, L., and Strelcyn, J.-M., Phys. Rev., 1976, vol. A14, pp. 2338–2345.Google Scholar
  2. 2.
    Milnor, J., Commun. Math. Phys., 1985, vol. 99, no.2, pp. 177–196.CrossRefGoogle Scholar
  3. 3.
    Devaney, R., An Introduction to Chaotic Dynamical Systems, Reading, 1989.Google Scholar
  4. 4.
    Banks, J., Brooks, J., Cairns, G., Davis, G., and Stacey, P., Amer. Math. Monthly, 1992, vol. 99, no.4, pp. 332–334.Google Scholar
  5. 5.
    Afraimovich, V.S., Bykov, V.V., and Shil’nikov, L.P., Trudy Mosk. Mat. Obshch., 1982, vol. 44, pp. 150–212.Google Scholar
  6. 6.
    Plykin, R.V., Sataev, E.A., and Shlyachkov, S.V., Itogi Nauki i Tekhniki. Sovr. Problemy Matematiki, 1991, vol. 66, pp. 10–148.Google Scholar
  7. 7.
    Robinson, C., Nonlinearity, 1989, vol. 2, no.4, pp. 495–518.CrossRefGoogle Scholar
  8. 8.
    Sinai, Ya.G., in Nelineinye volny (Nonlinear Waves), Moscow, 1979, pp. 192–212.Google Scholar
  9. 9.
    Blank, M.L., Ustoichivost’ i lokalizatsiya v khaoticheskoi dinamike (Stability and Localization in Chaotic Dynamics), Moscow, 2001.Google Scholar
  10. 10.
    Oseledets, V.I., Trudy Mosk. Mat. Obshch., 1968, vol. 19, pp. 179–210.Google Scholar
  11. 11.
    Glyzin, S.D., Differents. Uravn., 1997, vol. 33, no.6, pp. 805–811.Google Scholar
  12. 12.
    Rubanik, V.N., Kolebaniya kvazilineinykh sistem s zapazdyvaniem (Oscillations of Quasilinear Delay Systems), Moscow, 1969.Google Scholar
  13. 13.
    Kolesov, Yu.S., Problema adekvatnosti ekologicheskikh uravnenii (The Adequacy Problem for Ecological Equations), Deposited in VINITI, Yaroslavl, 1985, no. 1901-85.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • D. S. Glyzin
    • 1
    • 2
  • S. D. Glyzin
    • 1
    • 2
  • A. Yu. Kolesov
    • 1
    • 2
  • N. Kh. Rozov
    • 1
    • 2
  1. 1.Yaroslavl State UniversityYaroslavlRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations