Advertisement

Differential Equations

, Volume 41, Issue 2, pp 195–201 | Cite as

On the Stability Degree

  • V. V. Kozlov
  • A. A. Karapetyan
Ordinary Differential Equations

Keywords

Differential Equation Partial Differential Equation Ordinary Differential Equation Functional Equation Stability Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Kozlov, V.V., Prikl. Mat. Mekh., 1992, vol. 56, no.6, pp. 900–906.Google Scholar
  2. 2.
    Chetaev, N.G., Ustoichivost’ dvizheniya (Stability of Motion), Moscow, 1955.Google Scholar
  3. 3.
    Kozlov, V.V., Prikl. Mat. Mekh., 1993, vol. 57, no.5, pp. 14–19.Google Scholar
  4. 4.
    Kozlov, V.V., Prikl. Mat. Mekh., 2004, vol. 68, no.3, pp. 371–383.Google Scholar
  5. 5.
    Williamson, J., Amer. J. of Math., 1936, vol. 58, no.1, pp. 141–163.Google Scholar
  6. 6.
    Lakhadanov, V.M., Prikl. Mat. Mekh., 1975, vol. 39, no.1, pp. 53–58.Google Scholar
  7. 7.
    Karapetyan, A.V., Teor. i Primen. Mekh., 1994, vol. 20, pp. 89–93.Google Scholar
  8. 8.
    Wimmer, H.K., Linear Algebra and Appl., 1974, vol. 8, pp. 337–343.CrossRefGoogle Scholar
  9. 9.
    Lancaster, P. and Tismenetsky, M., Linear Algebra and Appl., 1983, vol. 52/53, pp. 479–496.Google Scholar
  10. 10.
    Shkalikov, A.A., Operator Theory: Advances and Applications, 1996, vol. 87, pp. 358–385.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • V. V. Kozlov
    • 1
  • A. A. Karapetyan
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations