Advertisement

Differential Equations

, Volume 41, Issue 1, pp 50–60 | Cite as

Extrema of the Andronov-Hopf function of a polynomial Lienard system

  • A. A. Grin’
  • L. A. Cherkas
Ordinary Differential Equations

Keywords

Differential Equation Partial Differential Equation Ordinary Differential Equation Functional Equation Lienard System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Andronov, A.A., Leontovich, E.A., Gordon, I.I., and Maier, A.G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka (Qualitative Theory of Second-Order Dynamical Systems), Moscow, 1966.Google Scholar
  2. 2.
    Problemy Gil’berta (Hilbert Problems), Aleksandrov, P.S., Ed., Moscow, 1969.Google Scholar
  3. 3.
    Ilyashenko, Y., Bull. of the AMS, 2002, vol. 39, no.3, pp. 301–354.MATHMathSciNetGoogle Scholar
  4. 4.
    Yamato, K., Nagoya Math. J., 1979, vol. 74, pp. 35–114.MathSciNetGoogle Scholar
  5. 5.
    Yanqian, Ye., Transl. of AMS. Math. Monographs, Providence, 1986, vol. 66.Google Scholar
  6. 6.
    Giacomini, H. and Neukirch, S., Physical Review E, 1997, vol. 56, no.4, pp. 3809–3813.MathSciNetGoogle Scholar
  7. 7.
    Giacomini, H. and Neukirch, S., Physical Review E, 1998, vol. 57, no.6, pp. 6573–6576.MathSciNetGoogle Scholar
  8. 8.
    Giacomini, H. and Neukirch, S., Physics Letters A, 1998, vol. 244, pp. 53–58.MATHMathSciNetGoogle Scholar
  9. 9.
    Llibre, J., Pizarro, L., and Ponce, E., Physical Review E, 1999, vol. 58, no.7, pp. 7134–7139.MathSciNetGoogle Scholar
  10. 10.
    Smale, S., Math. Intelligencer, 1998, vol. 20, pp. 7–15.CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Cherkas, L.A., Differents. Uravn., 1977, vol. 13, no.5, pp. 779–801.MATHGoogle Scholar
  12. 12.
    Cherkas, L.A., Differents. Uravn., 1997, vol. 33, no.5, pp. 689–699.MathSciNetGoogle Scholar
  13. 13.
    Grin’, A.A. and Cherkas, L.A., Trudy Inst. Matematiki NAN Belarusi, 2000, vol. 4, pp. 29–38.Google Scholar
  14. 14.
    Cherkas, L.A., Artes, J.C., and Llibre, J., Buletinul Academiei de stiinte a Republicii Moldova. Matematica, 2003, vol. 41, no.1, pp. 31–46.MathSciNetGoogle Scholar
  15. 15.
    Cherkas, L.A. and Grin’, A.A., Differents. Uravn., 2001, vol. 37, no.3, pp. 384–390.MathSciNetGoogle Scholar
  16. 16.
    Cherkas, L.A. and Shchukina, I.S., Differents. Uravn., 2001, vol. 37, no.4, pp. 481–487.MathSciNetGoogle Scholar
  17. 17.
    Cherkas, L.A. and Grin’, A.A., Vestn. GrGU im. Yanki Kupaly, 2001, vol. 2, no.6, pp. 7–17.Google Scholar
  18. 18.
    Duff, G.F., Ann. Math., 1953, vol. 57, no.1, pp. 15–31.MathSciNetGoogle Scholar
  19. 19.
    Amel’kin, V.V. and Levin, A.V., Differents. Uravn., 1999, vol. 35, no.1, pp. 3–7.MathSciNetGoogle Scholar
  20. 20.
    Perko, L., Differential Equations and Dynamical Systems. Texts in Applied Mathematics 7, Berlin, 2001.Google Scholar
  21. 21.
    Gasull, A. and Giacomini, H., J. of Differ. Equat., 2002, vol. 185, pp. 54–73.MATHMathSciNetGoogle Scholar
  22. 22.
    Reißig, R., Sansone, G., and Conti, R., Qualitative Theorie nichtlinearer Differentialgleichungen, Rome: Edizioni Cremonese, 1963. Translated under the title Kachestvennaya teoriya nelineinykh differentsial’nykh uravnenii, Moscow: Nauka, 1974.Google Scholar
  23. 23.
    Danilov, Yu.A., Mnogochleny Chebysheva (Chebyshev Polynomials), Minsk, 1984.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • A. A. Grin’
    • 1
    • 2
  • L. A. Cherkas
    • 1
    • 2
  1. 1.Grodno State UniversityGrodnoBelarus
  2. 2.Belarus State University of Computer Science and Radio ElectronicsMinskBelarus

Personalised recommendations