Differential Equations

, Volume 40, Issue 10, pp 1507–1511 | Cite as

Solvability of a nonlocal boundary value problem and the smoothness of the domain

  • D. V. Kapanadze
Short Communications


Differential Equation Partial Differential Equation Ordinary Differential Equation Functional Equation Nonlocal Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bitsadze, A.V. and Samarskii, A.A., Dokl. Akad. Nauk SSSR, 1969, vol. 185, no. 4, pp. 439–441.Google Scholar
  2. 2.
    Bitsadze, A.V., Nekotorye klassy uravnenii v chastnykh proizvodnykh (Some Classes of Partial Differential Equations), Moscow, 1981.Google Scholar
  3. 3.
    Bitsadze, A.V., Dokl. Akad. Nauk SSSR, 1984, vol. 277, no. 1, pp. 17–19.Google Scholar
  4. 4.
    Gordeziani, D.G., O metodakh resheniya odnogo klassa nelokal’nykh kraevykh zadach (On Methods for Solving a Class of Nonlocal Boundary Value Problems), Tbilisi, 1981.Google Scholar
  5. 5.
    Skubachevskii, A.L., Differents. Uravn., 1982, vol. 18, no. 9, pp. 1590–1599.Google Scholar
  6. 6.
    Skubachevskii, A.L., Mat. Sb., 1982, vol. 117, no. 4, pp. 548–558.Google Scholar
  7. 7.
    Paneyakh, B.P., Mat. Zametki, 1984, vol. 353, pp. 425–435.Google Scholar
  8. 8.
    Kapanadze, D.V., Differents. Uravn., 1987, vol. 23, no. 3, pp. 543–545.Google Scholar
  9. 9.
    Kishkis, K.Yu., Differents. Uravn., 1989, vol. 25, no. 1, pp. 59–64.Google Scholar
  10. 10.
    Mikhlin, S.G., Lineinye uravneniya v chastnykh proizvodnykh (Linear Partial Differential Equations), Moscow, 1977.Google Scholar
  11. 11.
    Landkof, N.S., Osnovy sovremennoi teorii potentsiala (Foundations of Modern Potential Theory), Moscow, 1966.Google Scholar
  12. 12.
    Vladimirov, V.S., Obobshchennye funktsii v matematicheskoi fizike (Generalized Functions in Mathematical Physics), Moscow, 1979.Google Scholar
  13. 13.
    Kecs, W. and Teodorescu, P., Applications of the Theory of Distributions in Mechanics, Bucharest: Editura Academiei Romane, 1974. Translated under the title Vvedenie v teoriyu obobshchennykh funktsii s prilozheniyami v mekhanike, Moscow, 1978.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • D. V. Kapanadze
    • 1
  1. 1.Institute of GeophysicsAcademy of SciencesTbilisiGeorgia

Personalised recommendations