Advertisement

Differential Equations

, Volume 40, Issue 10, pp 1461–1466 | Cite as

Uniqueness of the solution of the cauchy problem for some differential-difference parabolic equations

  • A. B. Muravnik
Partial Differential Equations

Keywords

Differential Equation Partial Differential Equation Ordinary Differential Equation Cauchy Problem Functional Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Tikhonov, A.N., Mat. Sb., 1935, vol. 42, no. 2, pp. 199–216.Google Scholar
  2. 2.
    Ladyzhenskaya, O.A., Mat. Sb., 1950, vol. 27(69), no. 2, pp. 175–184.Google Scholar
  3. 3.
    Eidel’man, S.D., Mat. Sb., 1953, vol. 33(75), no. 3, pp. 359–382.Google Scholar
  4. 4.
    Borok, V.M. and Zhitomirskii, Ya.I., Dokl. Akad. Nauk. SSSR, 1971, vol. 200, no. 3, pp. 515–518.Google Scholar
  5. 5.
    Chaus, N.N., Ukr. Math. Zh., 1964, vol. 16, no. 3, pp. 417–421.Google Scholar
  6. 6.
    Chaus, N.N., Ukr. Mat. Zh., 1965, vol. 17, no. 1, pp. 126–130.Google Scholar
  7. 7.
    Gel’fand, I.M. and Shilov, G.E., Uspekhi Mat. Nauk, 1953, vol. 8, no. 6, pp. 3–54.Google Scholar
  8. 8.
    Razgulin, A.V., Chaos Optics. Proceedings SPIE, 1993, vol. 2039, pp. 342–352.Google Scholar
  9. 9.
    Vorontsov, M.A., Iroshnikov, N.G., and Abernathy, R.L., Chaos, solitons, and Fractals, 1994, vol. 4, pp. 1701–1716.Google Scholar
  10. 10.
    Skubachevskii, A.V., Nonlinear Anal., 1998, vol. 32, no. 2, pp. 1701–1716.Google Scholar
  11. 11.
    Muravnik, A.B., Differents. Uravn., 2004, vol. 40, no. 5, pp. 692–701.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • A. B. Muravnik
    • 1
  1. 1.Moscow State Aviation Institute (Technical University)MoscowRussia

Personalised recommendations