Differential Equations

, Volume 40, Issue 9, pp 1345–1353 | Cite as

On the approximate solution of weakly singular integro-differential equations of Volterra type

  • A. A. Pedas
Numerical Methods


Recently, the convergence rate of the collocation method for integral and integro-differential equations with weakly singular kernels has been studied in a series of papers [1–7]. The present paper belongs to the same series. We analyze the possibility of constructing approximate solutions of high-order accuracy on a uniform or almost uniform grid for weakly singular integro-differential equations of Volterra type.


Differential Equation Partial Differential Equation Ordinary Differential Equation Approximate Solution Functional Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pedas, A.A. 1999Differents. Uravn.3512531261Google Scholar
  2. 2.
    Pedas, A.A., Timak, E. 2001Differents. Uravn.3714151424Google Scholar
  3. 3.
    Pallav, R.R., Pedas, A.A. 2003Differents. Uravn.3912721281Google Scholar
  4. 4.
    Brunner, H., Pedas, A., Vainikko, G. 1999Math. Comp.6810791095Google Scholar
  5. 5.
    Brunner, H., Pedas, A., Vainikko, G. 2001SIAM J. Numer. Anal.39957982Google Scholar
  6. 6.
    Brunner, H., Pedas, A., Vainikko, G. 2001BIT41891900Google Scholar
  7. 7.
    Parts, I. and Pedas, A., in Numerical Mathematics and Advanced Applications, Enumath 2001, Brezzi, F., Buffa, A., Corsaro, S., and Murli, A., Eds., Milano, 2003, pp. 919–928.Google Scholar
  8. 8.
    Brunner, H. and van der Houwen, P.J., The Numerical Solution of Volterra Equations, Amsterdam, 1986.Google Scholar
  9. 9.
    Brunner, H. 1986IMA J. Numer. Anal.6221239Google Scholar
  10. 10.
    Tang, T. 1992Numer. Math.61373382Google Scholar
  11. 11.
    Tang, T. 1993IMA J. Numer. Anal.139399Google Scholar
  12. 12.
    Norbury, J., Stuart, A.M. 1987Proc. Roy. Soc. Edinburgh106 A361373Google Scholar
  13. 13.
    Abdalkhani, J. 1993J. Integral Equations Appl.5149166Google Scholar
  14. 14.
    Diogo, T., McKee, S., Tang, T. 1994Proc. Roy. Soc. Edinburgh124 A199210Google Scholar
  15. 15.
    Monegato, G., Scuderi, L. 1998Math. Comput.6714931515Google Scholar
  16. 16.
    Galperin, E.A., Kansa, E.J., Makroglou, A., Nelson, S.A. 2000J. Comput. Appl. Math.11593211Google Scholar
  17. 17.
    Pedas, A., Vainikko, G. 2004Proc. Estonian Acad. Sci. Phys. Math.5399106Google Scholar
  18. 18.
    Hu, Q. 1998IMA J. Numer. Anal.18151164Google Scholar
  19. 19.
    Krantz, S.G. 1992Theory of Several Complex VariablesPacific GroveCaliforniaGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • A. A. Pedas
    • 1
  1. 1.Institute of Applied MathematicsTartu State UniversityTartuEstonia

Personalised recommendations