Constructions of doubly resolvable Steiner quadruple systems


An SQS(v) is said to be doubly resolvable if it has two orthogonal resolutions and denoted by DRSQS(v). In this paper, we give two new constructions, i.e., doubling construction and doubly resolvable MPCQS construction. We also give some new results of doubly resolvable SQS(v).

This is a preview of subscription content, access via your institution.


  1. 1.

    Hall P.: On Representatives of Subsets. J. Lond. Math. Soc. 10, 26–30 (1935).

    Article  Google Scholar 

  2. 2.

    Hanani H.: On some tactical configurations. Can. J. Math. 15, 702–722 (1963).

    MathSciNet  Article  Google Scholar 

  3. 3.

    Hartman A., Phelps K.T.: Steiner quadruple systems. In: Dinitz J.H., Stinson D.R. (eds.) Contemporary Design Theory, pp. 205–240. Weiley, New York (1992).

    Google Scholar 

  4. 4.

    Booth T.R.: A resolvable quadruple system of order \(20\). Ars Combin. 5, 121–125 (1978).

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Bose R.C., Shrikhande S.S., Parker E.T.: Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler’s conjecture. Can. J. Math. 12, 189–203 (1960).

    MathSciNet  Article  Google Scholar 

  6. 6.

    de Vries H.L.: On orthogonal resolutions of the classical Steiner quadruple system SQS(16). Des. Codes Cryptogr. 48, 287–292 (2008).

    MathSciNet  Article  Google Scholar 

  7. 7.

    Greenwell D.L., Lindner C.C.: Some remarks on resolvable quadruple systems. Ars Combin. 6, 215–221 (1978).

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Hanani H.: On quadruple systems. Can. J. Math. 12, 145–157 (1960).

    MathSciNet  Article  Google Scholar 

  9. 9.

    Hartman A.: Resolvable Steiner quadruple systems. Ars Combin. 9, 263–273 (1980).

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Hartman A.: Tripling quadruple systems. Ars Combin. 10, 255–309 (1980).

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Hartman A.: Doubly and orthogonally resolvable quadruple systems, Ars Combin., Combinatorial Mathematics, VII, Proc. Seventh Australian Conf., Lecture Notes in Math., Univ. Newcastle, Newcastle, : vol. 829. Springer, Berlin 1980, 157–164 (1979).

  12. 12.

    Hartman A.: The existence of resolvable Steiner quadruple systems. J. Combin. Theory (A) 44, 182–206 (1987).

    MathSciNet  Article  Google Scholar 

  13. 13.

    Heinrich K., Zhu L.: Existence of orthogonal Latin squares with aligned subsquares. Discrete Math. 59, 69–78 (1986).

    MathSciNet  Article  Google Scholar 

  14. 14.

    Ji L.: An improvement on H design. J. Combin. Des. 17, 25–35 (2009).

    MathSciNet  Article  Google Scholar 

  15. 15.

    Ji L.: A complete solution to existence of H designs. J. Combin. Des. 27, 75–81 (2019).

    MathSciNet  Article  Google Scholar 

  16. 16.

    Ji L., Zhu L.: Resolvable Steiner quadruple systems for the last \(23\) orders. SIAM J. Discrete Math. 19, 420–432 (2005).

    MathSciNet  Article  Google Scholar 

  17. 17.

    Meng Z.: Doubly resolvable H designs. Graphs Comb. 32, 2563–2574 (2016).

    MathSciNet  Article  Google Scholar 

  18. 18.

    Meng Z.: Doubly resolvable Steiner quadruple systems and related designs. Des. Codes Cryptogr. 84, 325–343 (2017).

    MathSciNet  Article  Google Scholar 

  19. 19.

    Mills W.H.: On the existence of H designs. Congr. Numer. 79, 129–141 (1990).

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Stern G., Lenz H.: Steiner triple systems with given subspaces, another proof of the Doyen-Wilson Theorem, Bull. Un. Mal. Ital. A(5) 17 (1980), 109–114.

  21. 21.

    Zhang X., Ge G.: H-designs with the properties of resolvability or \((1,2)\)-resolvability. Des. Codes Cryptogr. 55, 81–101 (2010).

    MathSciNet  Article  Google Scholar 

Download references


The authors would like to thank the referees for the helpful comments and suggestions.

Author information



Corresponding author

Correspondence to Zhaoping Meng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by NSFC Grant Nos: 11701338,U1304105, a Project of Shandong Province Higher Educational Science and Technology Program Grant No: J18KA239 (Z.Meng) and Education and Scientific Research Project for Young and Middle-aged Teachers of Fujian Province Grant No: JAT170685. (Z. Wu)

Communicated by C. J. Colbourn.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meng, Z., Zhang, B. & Wu, Z. Constructions of doubly resolvable Steiner quadruple systems. Des. Codes Cryptogr. (2021).

Download citation


  • Doubly resolvable
  • Steiner quadruple system
  • Candelabra quadruple system
  • H design
  • Latin square

Mathematics Subject Classification

  • 05B05
  • 05B15
  • 51E10