Grain-like structures with minimal and maximal period sequences


Nonlinear feedback shift registers (NFSRs) are important building blocks for stream ciphers. The cascade connection of an n-stage full-length linear feedback shift register (LFSR) into an m-stage NFSR is called a Grain-like structure. In this paper, we focus on Grain-like structures which can generate minimal and maximal possible period sequences. The existence of Grain-like structures which can generate minimal possible period sequences is proved for the cases \(m=n\) and \(m>n\). The number of such Grain-like structures is estimated in both cases. Two necessary conditions are presented for Grain-like structures to generate maximal possible period sequences. Moreover, some interesting properties of such Grain-like structures are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Aumasson J., Henzen L., Meier W., Nayaplasencia M.: QUARK: a lightweight hash. J. Cryptol. 26(4), 313–339 (2013).

    MathSciNet  Article  Google Scholar 

  2. 2.

    Cannière C., Preneel B.: Trivium, Lecture Notes in Computer Science, vol. 4986, pp. 244–266. Springer, Berlin (2008).

    Google Scholar 

  3. 3.

    Cannière C., Dunkelman O., Knežević M.: KATAN and KATANTAN—A Family of Small and Efficient Hardware-Oriented Block Ciphers. Lecture Notes in Computer Science, vol. 5747, pp. 272–288. Springer, Berlin (2009).

    Google Scholar 

  4. 4.

    Courtois N., Meier W.: Algebraic Attacks on Stream Ciphers with Linear Feedback. Lecture Notes in Computer Science, vol. 2656, pp. 346–359. Springer, Berlin (2003).

  5. 5.

    Golomb S.W.: Shift Register Sequences. Aegean Park Press, California (1982).

    Google Scholar 

  6. 6.

    Green D.H., Dimond K.R.: Nonlinear product-feedback shift registers. Proc. Inst. Electr. Eng. 117(4), 681–686 (1970).

    Article  Google Scholar 

  7. 7.

    Hell M., Johansson T., Meier W.: “The Grain Family of Stream Ciphers”. Lecture Notes in Computer Science, vol. 4986, pp. 179–190. Springer, Berlin (2008).

  8. 8.

    Hu H.G., Gong G.: Periods on two kinds of nonlinear feedback shift registers with time varying feedback functions. Int. J. Found. Comput. Sci. 22(6), 1317–1329 (2011).

    MathSciNet  Article  Google Scholar 

  9. 9.

    Jiang Y.P., Lin D.D.: On affine sub-families of Grain-like structures. Des. Codes Crypt. 82(3), 531–542 (2017).

    MathSciNet  Article  Google Scholar 

  10. 10.

    Lidl R., Niedereiter H.: Finite Field. Addison-Wesley, Canada (1983).

    Google Scholar 

  11. 11.

    Meier W., Staffelbach O.: Fast correlation attacks on certain stream cipher. J. Cryptol. 1(3), 159–176 (1989).

    MathSciNet  Article  Google Scholar 

  12. 12.

    Mykkeltveit J., Siu M.K., Tong P.: On the cycle structure of some nonlinear shift register sequences. Inf. Control 43(2), 202–215 (1979).

    Article  Google Scholar 

  13. 13.

    Yang Y.H., Zeng X.Y., Xu Y.G.: Periods on the cascade connection of an LFSR and an NFSR. Chin. J. Electron. 28(2), 301–308 (2019).

    Article  Google Scholar 

  14. 14.

    Zhang B., Li Z.Q., Feng D.G., Lin D.D.: Near Collision Attack on the Grain v1 Stream Cipher. Lecture Notes in Computer Science, vol. 8424, pp. 518–538. Springer, Berlin (2014).

  15. 15.

    Zhang J.M., Qi W.F., Tian T., Wang Z.X.: Further results on the decomposition of an NFSR into the cascade connection of an NFSR into an LFSR. IEEE Trans. Inf. Theory 61(1), 645–654 (2015).

    MathSciNet  Article  Google Scholar 

  16. 16.

    Zhang B., Xu C., Meier W.: Fast Near Collision Attack on the Grain v1 Stream Cipher. Lecture Notes in Computer Science, vol. 10821, pp. 771–802. Springer, Cham (2018).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Qunxiong Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61872383 and 61502524). The work of Qunxiong Zheng was also supported by Young Elite Scientists Sponsorship Program by CAST (Grant No. 2016QNRC001) and by National Postdoctoral Program for Innovative Talents (Grant No. BX201600188) and by China Postdoctoral Science Foundation funded project (Grant No. 2017M611035)

Communicated by T. Helleseth.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zheng, Q., Zhao, X. et al. Grain-like structures with minimal and maximal period sequences. Des. Codes Cryptogr. (2021).

Download citation


  • Stream ciphers
  • Nonlinear feedback shift registers
  • Cascade connection of NFSRs
  • Grain-like structures

Mathematics Subject Classification

  • 11B50
  • 94A55
  • 94A60