Skip to main content
Log in

Roulette games and depths of words over finite commutative rings

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, we propose three new turn-based two player roulette games and provide positional winning strategies for these games in terms of depths of words over finite commutative rings with unity. We further discuss the feasibility of these winning strategies by studying depths of codewords of all repeated-root \((\alpha +\gamma \beta )\)-constacyclic codes of prime power lengths over a finite commutative chain ring \({\mathcal {R}},\) where \(\alpha \) is a non-zero element of the Teichmüller set of \({\mathcal {R}},\) \(\gamma \) is a generator of the maximal ideal of \({\mathcal {R}}\) and \(\beta \) is a unit in \({\mathcal {R}}.\) As a consequence, we explicitly determine depth distributions of all repeated-root \((\alpha +\gamma \beta )\)-constacyclic codes of prime power lengths over \({\mathcal {R}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Blackburn S.R., Etzion T., Paterson K.G.: Permutation polynomials, De Bruijn sequences, and linear complexity. J. Combin. Theory Ser. A 76(1), 55–82 (1996).

    Article  MathSciNet  Google Scholar 

  2. Calderbank A.R., Hammons A.R., Kumar P.V., Sloane N.J., Solé P.: A linear construction for certain Kerdock and preparata codes. Bull. Am. Math. Soc. 29(2), 218–222 (1993).

    Article  MathSciNet  Google Scholar 

  3. Chan A.H., Games R.A., Key E.L.: On the complexities of De Bruijn sequences. J. Combin. Theory Ser. A 33(3), 233–246 (1982).

    Article  MathSciNet  Google Scholar 

  4. Colcombet T., Niwiński D.: On the positional determinacy of edge-labeled games. Theor. Comput. Sci. 352(1–3), 190–196 (2006).

    Article  MathSciNet  Google Scholar 

  5. Deng G.: On the depth spectrum of binary linear codes and their dual. Discret. Math. 340(4), 591–595 (2017).

    Article  MathSciNet  Google Scholar 

  6. Dinh H.Q., Nguyen H.D., Sriboonchitta S., Vo T.M.: Repeated-root constacyclic codes of prime power lengths over finite chain rings. Finite Fields Appl. 43, 22–41 (2017).

    Article  MathSciNet  Google Scholar 

  7. Ehrenborg R., Skinner C.M.: The blind Bartender’s problem. J. Combin. Theory Ser. A 70(2), 249–266 (1995).

    Article  MathSciNet  Google Scholar 

  8. Etzion T.: The depth distribution—a new characterization for linear codes. IEEE Trans. Inf. Theory 43(4), 1361–1363 (1997).

    Article  MathSciNet  Google Scholar 

  9. Games R., Chan A.: A fast algorithm for determining the complexity of a binary sequence with period \(2^n\). IEEE Trans. Inf. Theory 29(1), 144–146 (1983).

    Article  Google Scholar 

  10. Gardner M.: About rectangling rectangles, parodying poe and many other pleasing problem, mathematical games. Sci. Am. 240(2), 16–24 (1979).

    Article  Google Scholar 

  11. Gardner M.: On altering the past, delaying the future and other ways of tampering with time, mathematical games. Sci. Am. 240(3), 21–30 (1979).

  12. Hammons A., Kumar P.V., Calderbank A., Sloane N., Solé P.: The \({\mathbb{Z}}_{4}\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Theory 40(2), 301–319 (1994).

    Article  Google Scholar 

  13. Kai X., Wang L., Zhu S.: The depth spectrum of negacyclic codes over \({\mathbb{Z}}_4\). Discret. Math. 340(3), 345–350 (2017).

    Article  Google Scholar 

  14. Kong B., Zheng X., Ma H.: The depth spectrums of constacyclic codes over finite chain rings. Discret. Math. 338(2), 256–261 (2015).

    Article  MathSciNet  Google Scholar 

  15. Laaser W.T, Ramshaw L.: Probing the rotating table. In: The Mathematical Gardner, pp. 285–307. Springer, Berlin (1981).

  16. Lewis T., Willard S.: The rotating table. Math. Mag. 53(3), 174–179 (1980).

    Article  MathSciNet  Google Scholar 

  17. Luo Y., Fu F.-W., Wei V.-W.: On the depth distribution of linear codes. IEEE Trans. Inf. Theory 46(6), 2197–2203 (2000).

    Article  MathSciNet  Google Scholar 

  18. Malvone V., Murano A., Sorrentino L.: Games with additional winning strategies. In: CILC’15, CEUR Workshop proceedings, pp. 175–180 (2015).

  19. Malvone V., Murano A., Sorrentino L.: Additional winning strategies in reachability games. Fundam. Inf. 159(1–2), 175–195 (2018).

    Article  MathSciNet  Google Scholar 

  20. McDonald B.R.: Finite Rings with Identity, vol. 28. Marcel Dekker Incorporated, New York (1974).

    MATH  Google Scholar 

  21. Mitchell C.J.: On integer-valued rational polynomials and depth distributions of binary codes. IEEE Trans. Inf. Theory 44(7), 3146–3150 (1998).

    Article  MathSciNet  Google Scholar 

  22. Nechaev A.A.: Kerdock code in a cyclic form. Discret. Math. Appl. 1(4), 365–384 (1991).

    Article  MathSciNet  Google Scholar 

  23. Sharma A., Sidana T.: On the structure and distances of repeated-root constacyclic codes of prime power lengths over finite commutative chain rings. IEEE Trans. Inf. Theory 65(2), 1072–1084 (2018).

    Article  MathSciNet  Google Scholar 

  24. Sidana T.: On depth spectra of constacyclic codes (2017). arXiv preprint. arXiv:1912.05815.

  25. Yehuda R.B., Etzion T., Moran S.: Rotating-table games and derivatives of words. Theor. Comput. Sci. 108(2), 311–329 (1993).

    Article  MathSciNet  Google Scholar 

  26. Yuan J., Zhu S., Kai X.: On the depth spectrum of repeated-root constacyclic codes over finite chain rings. Discret. Math. 343(2), 111647 (2020).

    Article  MathSciNet  Google Scholar 

  27. Zeng M., Luo Y., Gong G.: Rotating-table game and construction of periodic sequences with lightweight calculation. In: 2012 IEEE International Symposium on Information Theory Proceedings, pp. 1221–1225. IEEE (2012).

Download references

Acknowledgements

The author A. Sharma research support by DST-SERB, India, under Grant No. EMR/2017/000662, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Sharma.

Additional information

Communicated by C. Ding.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidana, T., Sharma, A. Roulette games and depths of words over finite commutative rings. Des. Codes Cryptogr. 89, 641–678 (2021). https://doi.org/10.1007/s10623-020-00838-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00838-4

Keywords

Mathematics Subject Classification

Navigation