Abstract
Linear complementary dual (LCD) codes are linear codes that intersect with their dual trivially. We give a characterization of LCD codes over \(\mathbb {F}_q\) having large minimum weights for \(q \in \{2,3\}\). Using the characterization, for arbitrary n, we determine the largest minimum weights among LCD [n, k] codes over \(\mathbb {F}_q\), where \((q,k) \in \{(2,4), (3,2),(3,3)\}\). Moreover, for arbitrary n, we give a complete classification of optimal LCD [n, k] codes over \(\mathbb {F}_q\), where \((q,k) \in \{(2,3), (2,4), (3,2),(3,3)\}\).
This is a preview of subscription content, access via your institution.
References
- 1.
Araya M., Harada M.: On the classification of linear complementary dual codes. Discret. Math. 342, 270–278 (2019).
- 2.
Araya M., Harada M.: On the minimum weights of binary linear complementary dual codes. Cryptogr. Commun. 12, 285–300 (2020).
- 3.
Araya M., Harada M., Saito K.: Quaternary Hermitian linear complementary dual codes. IEEE Trans. Inf. Theory 66, 2751–2759 (2020).
- 4.
Bonisoli A.: Every equidistant linear code is a sequence of dual Hamming codes. Ars Combin. 18, 181–186 (1984).
- 5.
Bosma W., Cannon J., Playoust C.: The Magma algebra system I: the user language. J. Symb. Comput. 24, 235–265 (1997).
- 6.
Cameron P.J., van Lint J.H.: Designs, Codes and Their Links. Cambridge University Press, Cambridge (1991).
- 7.
Carlet C., Guilley S.: Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 10, 131–150 (2016).
- 8.
Carlet C., Mesnager S., Tang C., Qi Y.: New characterization and parametrization of LCD codes. IEEE Trans. Inf. Theory 65, 39–49 (2019).
- 9.
Carlet C., Mesnager S., Tang C., Qi Y., Pellikaan R.: Linear codes over \(\mathbb{F}_q\) are equivalent to LCD codes for \(q > 3\). IEEE Trans. Inf. Theory 64, 3010–3017 (2018).
- 10.
Fu Q., Li R., Fu F., Rao Y.: On the construction of binary optimal LCD codes with short length. Int. J. Found. Comput. Sci. 30, 1237–1245 (2019).
- 11.
Galvez L., Kim J.-L., Lee N., Roe Y.G., Won B.-S.: Some bounds on binary LCD codes. Cryptogr. Commun. 10, 719–728 (2018).
- 12.
Harada M., Saito K.: Binary linear complementary dual codes. Cryptogr. Commun. 11, 677–696 (2019).
- 13.
Harada M., Saito K.: Remark on subcodes of linear complementary dual codes. Inf. Process. Lett. 159, 10596 (2020).
- 14.
Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).
- 15.
Lina Jr. E.R., Nocon E.G.: On the construction of some LCD codes over finite fields. Manila J. Sci. 9, 67–82 (2016).
- 16.
Lu L., Li R., Guo L., Fu Q.: Maximal entanglement entanglement-assisted quantum codes constructed from linear codes. Quant. Inf. Process. 14, 165–182 (2015).
- 17.
Maruta T.: On the achievement of the Griesmer bound. Des. Codes Cryptogr. 12, 83–87 (1997).
- 18.
Massey J.L.: Linear codes with complementary duals. Discret. Math. 106/107, 337–342 (1992).
- 19.
McKay B.D., Piperno A.: Practical graph isomorphism, II. J. Symb. Comput. 60, 94–112 (2014).
- 20.
Pang B., Zhu S., Kai X.: Some new bounds on LCD codes over finite fields. Cryptogr. Commun. 12, 743–755 (2020).
- 21.
Shoup V. NTL: A Library for doing Number Theory. http://www.shoup.net/ntl/.
Acknowledgements
The authors would like to thank Tatsuya Maruta for his useful comments. This work was supported by JSPS KAKENHI Grant Number 19H01802.
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Communicated by T. Helleseth.
Rights and permissions
About this article
Cite this article
Araya, M., Harada, M. & Saito, K. Characterization and classification of optimal LCD codes. Des. Codes Cryptogr. (2021). https://doi.org/10.1007/s10623-020-00834-8
Received:
Revised:
Accepted:
Published:
Keywords
- Linear complementary dual code
- Binary code
- Ternary code
- Simple code
- Griesmer bound
Mathematics Subject Classification
- 94B05