Skip to main content
Log in

Two notions of differential equivalence on Sboxes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this work, we discuss two notions of differential equivalence on Sboxes. First, we introduce the notion of DDT-equivalence which applies to vectorial Boolean functions that share the same difference distribution table (DDT). Next, we compare this notion to what we call the \(\gamma \)-equivalence, applying to vectorial Boolean functions whose DDTs have the same support. We discuss the relation between these two equivalence notions, demonstrate that the number of DDT- or \(\gamma \)-equivalent functions is invariant under EA- and CCZ-equivalence and provide an algorithm for computing the DDT-equivalence and the \(\gamma \)-equivalence classes of a given function. We study the sizes of these classes for some families of Sboxes. Finally, we prove a result that shows that the rows of the DDT of an APN permutation are pairwise distinct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Biham E., Shamir A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes A.J., Vanstone S.A. (eds.) CRYPTO’90, LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991).

    Google Scholar 

  2. Blondeau C., Gérard B.: Multiple differential cryptanalysis: theory and practice. In: Joux A. (ed.) FSE 2011, LNCS, vol. 6733, pp. 35–54. Springer, Heidelberg (2011).

    Google Scholar 

  3. Blondeau C., Nyberg K.: New links between differential and linear cryptanalysis. In: Johansson T., Nguyen P.Q. (eds.) EUROCRYPT 2013, LNCS, vol. 7881, pp. 388–404. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_24.

  4. Blondeau C., Canteaut A., Charpin P.: Differential properties of power functions. IJICoT 1(2), 149–170 (2010). https://doi.org/10.1504/IJICOT.2010.032132.

    Article  MathSciNet  MATH  Google Scholar 

  5. Brinkmann M., Leander G.: On the classification of APN functions up to dimension five. Des. Codes Cryptogr. 49(1–3), 273–288 (2008). https://doi.org/10.1007/s10623-008-9194-6.

    Article  MathSciNet  MATH  Google Scholar 

  6. Browning K., Dillon J., Kibler R., McQuistan M.: APN polynomials and related codes. J. Comb. Inf. Syst. Sci. 34(1–4), 135–159 (2009).

    MATH  Google Scholar 

  7. Browning K., Dillon J., McQuistan M., Wolfe A.: An APN permutation in dimension six. In: Finite Fields: Theory and Applications, Contemporary Mathematics, vol. 518, pp. 33–42. AMS (2010)

  8. Canteaut A., Roué J.: On the behaviors of affine equivalent sboxes regarding differential and linear attacks. In: Oswald E., Fischlin M. (eds.) EUROCRYPT 2015, Part I, LNCS, vol. 9056, pp. 45–74. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_3.

  9. Carlet C.: Partially-bent functions. Des. Codes Cryptogr. 3(2), 135–145 (1993). https://doi.org/10.1007/BF01388412.

    Article  MathSciNet  MATH  Google Scholar 

  10. Carlet C.: Open questions on nonlinearity and on APN functions. In: Koç Ç.K., Mesnager S., Savaş E. (eds.) Arithmetic of Finite Fields - WAIFI 2014, pp. 83–107. Springer, New York (2015). https://doi.org/10.1007/978-3-319-16277-5_5.

    Google Scholar 

  11. Carlet C., Charpin P., Zinoviev V.: Codes, bent functions and permutations suitable For DES-like cryptosystems. Des. Codes Cryptogr. 15(2), 125–156 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  12. Chabaud F., Vaudenay S.: Links between differential and linear cryptoanalysis. In: Santis A.D. (ed.) EUROCRYPT’94, LNCS, vol. 950, pp. 356–365. Springer, Heidelberg (1995).

    Google Scholar 

  13. Dobbertin H.: Almost perfect nonlinear power functions on GF(2\(^{\text{ n }}\)): the Welch case. IEEE Trans. Inf. Theory 45(4), 1271–1275 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  14. Edel Y., Pott A.: A new almost perfect nonlinear function which is not quadratic. Adv. Math. Commun. 3(1), 59–81 (2009). https://doi.org/10.3934/amc.2009.3.59.

    Article  MathSciNet  MATH  Google Scholar 

  15. Edel Y., Kyureghyan G.M., Pott A.: A new APN function which is not equivalent to a power mapping. IEEE Trans. Inf. Theory 52(2), 744–747 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  16. Flori J.P., Jean J.: libapn C++ Library. https://github.com/ANSSI-FR/libapn (2018)

  17. Gorodilova A.: On a remarkable property of APN Gold functions. Cryptology ePrint Archive, Report 2016/286 (2016)

  18. Hernando F., McGuire G.: Proof of a conjecture on the sequence of exceptional numbers, classifying cyclic codes and APN functions. J. Algebr. 343(1), 78–92 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  19. Knudsen L.R.: Truncated and higher order differentials. In: Preneel B. (ed.) FSE’94, LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995).

    Google Scholar 

  20. Knudsen L.R., Leander G., Poschmann A., Robshaw M.J.B.: PRINTcipher: a block cipher for IC-printing. In: Mangard S., Standaert F.X. (eds.) CHES 2010, LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010).

    Google Scholar 

  21. Langevin, P.: Classification of Boolean functions under the affine group. http://langevin.univ-tln.fr/project/agl/agl.html (2009)

  22. Leander G., Poschmann A.: On the classification of 4 bit s-boxes. In: Carlet C., Sunar B. (eds.) Proceedings of Arithmetic of Finite Fields, First International Workshop, WAIFI 2007, Madrid, Spain, June 21–22, 2007, Lecture Notes in Computer Science, vol. 4547, pp. 159–176. Springer, New York (2007). https://doi.org/10.1007/978-3-540-73074-3_13

  23. Nyberg K.: Differentially uniform mappings for cryptography. In: Helleseth T. (ed.) EUROCRYPT’93, LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994).

    Google Scholar 

  24. Nyberg K., Knudsen L.R.: Provable security against differential cryptanalysis (rump session). In: Brickell E.F. (ed.) CRYPTO’92, LNCS, vol. 740, pp. 566–574. Springer, Heidelberg (1993).

    Google Scholar 

  25. Park S., Sung S.H., Lee S., Lim J.: Improving the upper bound on the maximum differential and the maximum linear Hull probability for SPN structures and AES. In: Johansson T. (ed.) FSE 2003, LNCS, vol. 2887, pp. 247–260. Springer, Heidelberg (2003).

    Google Scholar 

  26. Rothaus O.S.: On “bent” functions. J. Comb. Theory Ser. A 20(3), 300–305 (1976).

    Article  MATH  Google Scholar 

  27. Suder, V.: Antiderivative functions over \({\mathbb{F}}\_{2^n}\). In: Workshop on Coding and Cryptography—WCC 2015 (2015). https://hal.archives-ouvertes.fr/WCC2015/hal-01275708v1

  28. Suder V.: Antiderivative functions over \({\mathbb{F}}\_{2^n}\). Des. Codes Cryptogr. 82(1–2), 435–447 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  29. Yu Y., Wang M., Li Y.: A matrix approach for constructing quadratic APN functions. Des. Codes Cryptogr. 73(2), 587–600 (2014). https://doi.org/10.1007/s10623-014-9955-3.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Jean-Pierre Flori, Itai Dinur and Orr Dunkelman for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Boura.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boura, C., Canteaut, A., Jean, J. et al. Two notions of differential equivalence on Sboxes. Des. Codes Cryptogr. 87, 185–202 (2019). https://doi.org/10.1007/s10623-018-0496-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-0496-z

Keywords

Mathematics Subject Classification

Navigation