Advertisement

On the second Feng-Rao distance of Algebraic Geometry codes related to Arf semigroups

  • José I. Farrán
  • Pedro A. García-Sánchez
  • Benjamín A. Heredia
Article
  • 25 Downloads

Abstract

We describe the second (generalized) Feng-Rao distance for elements in an Arf numerical semigroup that are greater than or equal to the conductor of the semigroup. This provides a lower bound for the second Hamming weight for one point AG codes. In particular, we can obtain the second Feng-Rao distance for the codes defined by asymptotically good towers of function fields whose Weierstrass semigroups are inductive. In addition, we compute the second Feng-Rao number, and provide some examples and comparisons with previous results on this topic. These calculations rely on Apéry sets, and thus several results concerning Apéry sets of Arf semigroups are presented.

Keywords

AG codes Towers of function fields Generalized Hamming weights Order bounds Arf semigroups Inductive semigroups 

Mathematics Subject Classification

11T71 20M14 11Y55 

Notes

Acknowledgements

The first author is supported by the Project MTM2015-65764-C3-1-P (MINECO/FEDER). The second author is supported by the Project MTM2014-55367-P, which is funded by Ministerio de Economía y Competitividad and Fondo Europeo de Desarrollo Regional FEDER, and by the Junta de Andalucía Grant Number FQM-343. The third author is supported by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the Project UID/MAT/00297/2013 (Centro de Matemática e Aplicações).

References

  1. 1.
    Apéry R.: Sur les branches superlinéaires des courbes algébriques. C. R. Acad. Sci. Paris 222, 1198–1200 (1946).MathSciNetzbMATHGoogle Scholar
  2. 2.
    Assi A., García-Sánchez P.A.: Numerical Semigroups and Applications. RSME Springer Series, vol. 1. Springer, Berlin (2016).Google Scholar
  3. 3.
    Barucci V., D’Anna M., Fröberg R.: Arf characters of an algebroid curve. JP J. Algebra Number Theory Appl. 3(2), 219–243 (2003).MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bras-Amorós M.: Improvements to evaluation codes and new characterizations of Arf semigroups. In: Mora T., Mattson H.F. (eds.) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Lecture Notes in Computer Science. Springer, Toulouse (2013).Google Scholar
  5. 5.
    Bras-Amorós M.: Acute semigroups, the order bound on the minimum distance, and the Feng-Rao improvements. IEEE Trans. Inf. Theory 50, 1282–1289 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bras-Amorś M.: Numerical semigroups and codes. Algebraic geometry modeling in information theory. Ser. Coding Theory Cryptol. 8, 167–218 (2013).Google Scholar
  7. 7.
    Bras-Amorós M., García-Sánchez P.A.: Patterns on numerical semigroups. Linear Algebra Appl. 414, 652–669 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Campillo A., Farrán J.I., Munuera C.: On the parameters of algebraic geometry codes related to Arf semigroups. IEEE Trans. Inf. Theory 46, 2634–2638 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Delgado M., García-Sánchez P.A., Morais J.: NumericalSgps, A GAP Package for Numerical Semigroups, Version 1.0.1 (Refereed GAP package), (2015). http://www.gap-system.org.
  10. 10.
    Delgado M., Farrán J.I., García-Sánchez P.A., Llena D.: On the generalized Feng-Rao numbers of numerical semigroups generated by intervals. Math. Comput. 82, 1813–1836 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Delgado M., Farrán J.I., García-Sánchez P.A., Llena D.: On the weight hierarchy of codes coming from semigroups with two generators. IEEE Trans. Inf. Theory 60–1, 282–295 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Farrán J.I., García-Sánchez P.A.: The second Feng-Rao number for codes coming from inductive semigroups. IEEE Trans. Inf. Theory 61, 4938–4947 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Farrán J.I., García-Sánchez P.A., Heredia B.A., Leamer M.J.: The second Feng-Rao number for codes coming from telescopic semigroups. Des. Codes Cryptogr. (2017).  https://doi.org/10.1007/s10623-017-0426-5
  14. 14.
    Farrán J.I., Munuera C.: Goppa-like bounds for the generalized Feng-Rao distances. International Workshop on Coding and Cryptography (WCC 2001) (Paris). Discret. Appl. Math. 128(1), 145–156 (2003).Google Scholar
  15. 15.
    Feng G.L., Rao T.R.N.: Decoding algebraic-geometric codes up to the designed minimum distance. IEEE Trans. Inf. Theory 39, 37–45 (1993).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    The GAP Group, GAP – Groups.: Algorithms, and Programming, Version 4.7.5 (2014). http://www.gap-system.org
  17. 17.
    García A., Stichtenoth H.: On the asymptotic behaviour of some towers of function fields over finite fields. J. Number Theory 61, 248–273 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    García-Sánchez P.A., Heredia B.A., Karakaş H.I., Rosales J.C.: Parametrizing Arf numerical semigroups. J. Algebra Appl. 16(1750209) 31 (2017).Google Scholar
  19. 19.
    Heijnen P., Pellikaan R.: Generalized Hamming weights of \(q\)-ary Reed-Muller codes. IEEE Trans. Inf. Theory 44, 181–197 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Helleseth T., Kløve T., Mykkleveit J.: The weight distribution of irreducible cyclic codes with block lengths \(n_{1}((q^{l}-1)/N)\). Discret. Math. 18, 179–211 (1977).CrossRefzbMATHGoogle Scholar
  21. 21.
    Høholdt T., van Lint J.H., Pellikaan R.: Algebraic geometry codes. In: Pless V., Huffman W.C., Brualdi R.A. (Eds.) Handbook of Coding Theory, vol. 1, pp. 871–961. Elsevier, Amsterdam (1998).Google Scholar
  22. 22.
    Kirfel C., Pellikaan R.: The minimum distance of codes in an array coming from telescopic semigroups. IEEE Trans. Inf. Theory 41, 1720–1732 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Rosales J.C.: Principal ideals of numerical semigroups. Bull. Belg. Math. Soc. Simon Stevin 10, 329–343 (2003).MathSciNetzbMATHGoogle Scholar
  24. 24.
    Rosales J.C., García-Sánchez P.A.: Numerical Semigroups, Developments in Mathematics, p. 20. Springer, New York (2009).CrossRefGoogle Scholar
  25. 25.
    Wei V.: Generalized Hamming weights for linear codes. IEEE Trans. Inf. Theory 37, 1412–1428 (1991).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • José I. Farrán
    • 1
  • Pedro A. García-Sánchez
    • 2
  • Benjamín A. Heredia
    • 3
  1. 1.IMUVa and Departamento de Matemática Aplicada, Escuela de Ingeniería Informática de SegoviaUniversidad de ValladolidValladolidSpain
  2. 2.IEMath-GR and Departamento de ÁlgebraUniversidad de GranadaGranadaSpain
  3. 3.Departamento de Matemática e Centro de Matemática e Aplicaçoes (CMA), FCTUniversidade Nova de LisboaLisbonPortugal

Personalised recommendations