Speeding up Huff form of elliptic curves



This paper presents faster inversion-free point addition formulas for the curve \(y (1+ax^2) = cx (1+dy^2)\). The proposed formulas improve the point doubling operation count record (I, M, S, D, a are arithmetic operations over a field. I: inversion, M: multiplication, S: squaring, D: multiplication by a curve constant, a: addition/subtraction) from \(6\mathbf{{M}}+ 5\mathbf{{S}}\) to \(8\mathbf{{M}}\) and mixed addition operation count record from \(10\mathbf{{M}}\) to \(8\mathbf{{M}}\). Both sets of formulas are shown to be 4-way parallel, leading to an effective cost of \(2\mathbf{{M}}\) per either of the group operations.


Elliptic curves 2-Isogeny Efficient Scalar multiplication Huff curves Inversion-free point addition Parallel computation 

Mathematics Subject Classification

94A60 11T71 14G50 68P25 



The authors thank the anonymous reviewers for their suggestions and comments.


  1. 1.
    Bernstein D.J., Birkner P., Joye M., Lange T., Peters C.: Twisted Edwards curves. In: AFRICACRYPT 2008 Proceedings, LNCS, vol. 5023, pp. 389–405. Springer (2008).Google Scholar
  2. 2.
    Bernstein D.J., Chuengsatiansup C., Kohel D., Lange T.: Twisted Hessian curves. In: Progress in Cryptology LATINCRYPT 2015 Proceedings, vol. 9230, pp. 269–294. Springer (2015).Google Scholar
  3. 3.
    Bernstein D.J., Lange T.: Faster addition and doubling on elliptic curves. In: ASIACRYPT 2007, LNCS, vol. 4833, pp. 29–50. Springer (2007).Google Scholar
  4. 4.
    Bernstein D.J., Lange T.: A complete set of addition laws for incomplete Edwards curves. J. Number Theory 131(5), 858–872 (2011).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Billet O., Joye M.: The Jacobi model of an elliptic curve and side-channel analysis. In: 2003 Proceedings Applied Algebra, Algebraic Algorithms and Error-Correcting Codes: 15th International Symposium, AAECC-15, Toulouse, France, 12–16 May, vol. 2643, pp. 34–42. Springer, Berlin (2003).Google Scholar
  6. 6.
    Ciss A.A., Sow D.: On a new generalization of Huff curves. Cryptology ePrint Archive, Report 2011/580, (2011). http://eprint.iacr.org/2011/580.
  7. 7.
    Hankerson D., Menezes A.J., Vanstone S.A.: Guide to Elliptic Curve Cryptography. Springer, New York (2003).MATHGoogle Scholar
  8. 8.
    Hisil H.: Elliptic curves, group law, and efficient computation. PhD thesis, Queensland University of Technology (2010).Google Scholar
  9. 9.
    Hisil H., Wong K.K.-H., Carter G., Dawson E.: Twisted Edwards curves revisited. In: ASIACRYPT 2008 Proceedings, LNCS, vol. 5350, pp. 326–343. Springer (2008).Google Scholar
  10. 10.
    Hisil H., Wong K.K.-H., Carter G., Dawson E.: Jacobi quartic curves revisited. In: ACISP 2009 proceedings, LNCS, vol. 5594, pp. 452–468. Springer (2009).Google Scholar
  11. 11.
    Huff G.B.: Diophantine problems in geometry and elliptic ternary forms. Duke Math. J. 15(2), 443–453 (1948).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Joye M., Tibouchi M., Vergnaud D.: Huff’s model for elliptic curves. In: Algorithmic Number Theory: 9th International Symposium, ANTS-IX, Nancy, France, July 19–23, 2010 Proceedings, vol. 6197, pp. 234–250. Springer, Berlin (2010).Google Scholar
  13. 13.
    Moody D., Shumow D.: Analogues of vélu’s formulas for isogenies on alternate models of elliptic curves. Math. Comput. 85(300), 1929–1951 (2016).CrossRefMATHGoogle Scholar
  14. 14.
    Silverman J.H.: The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, vol. 106. Springer, 1st ed. 1986. Corr. 3rd printing (1994).Google Scholar
  15. 15.
    Wu H., Feng R.: Elliptic curves in Huff’s model. Cryptology ePrint Archive, Report 2010/383 (2010). http://eprint.iacr.org/2010/390.
  16. 16.
    Wu H., Feng R.: Elliptic curves in Huff’s model. Wuhan Univ. J. Nat. Sci. 17(6), 473–480 (2012).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Gediz Electric Inc.GedizTurkey
  2. 2.Yasar UniversityIzmirTurkey

Personalised recommendations