Advertisement

A ring-like cascade connection and a class of NFSRs with the same cycle structures

  • Xiao-Xin Zhao
  • Tian Tian
  • Wen-Feng Qi
Article
  • 42 Downloads

Abstract

Nonlinear feedback shift registers (NFSRs) are widely used in stream cipher designs. In this paper, we propose a variant of cascade connections of NFSRs, called ring-like cascade connections. It is shown that given an initial state of a ring-like cascade connection, each register outputs the sequence of the same period. Based on this configuration, a class of NFSRs with the same cycle structure can be derived. Moreover, inspired by this result, two more general types of NFSRs with the same cycle structures are also studied.

Keywords

Stream ciphers Nonlinear feedback shift registers Cycle structure Cascade connection 

Mathematics Subject Classification

11B50 94A55 94A60 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61672533, 61521003) and the National Cryptography Development Fund of China (Grant No. MMJJ20170103).

References

  1. 1.
    Hell M., Johansson T., Maximov A., Meier W.: The Grain family of stream ciphers. In: Robshaw M., Billet O. (eds.) New Stream Cipher Designs: The eSTREAM Finalists. Lecture Notes in Computer Science, vol. 4986, pp. 179–190. Springer, New York (2008).CrossRefGoogle Scholar
  2. 2.
    Cannière C., Preneel B.: Trivium. In: Robshaw M., Billet O. (eds.) New Stream Cipher Designs: The eSTREAM Finalists. Lecture Notes in Computer Science, vol. 4986, pp. 244–266. Springer, New York (2008).CrossRefGoogle Scholar
  3. 3.
    Kjeldsen K.: On the cycle structure of a set of nonlinear shift registers with symmetric feedback functions. J. Comb. Theory Ser. A 20(2), 154–169 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Søreng J.: The periods of the sequences generated by some symmetric shift registers. J. Comb. Theory Ser. A 21(2), 164–187 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Søreng J.: Symmetric shift registers. Pac. J. Math. 85(1), 201–229 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Wang Z.X., Xu H., Qi W.F.: On the cycle structure of some nonlinear feedback shift registers. Chin. J. Electron. 23(4), 801–804 (2014).Google Scholar
  7. 7.
    Rozhkov M.I.: On some classes of nonlinear shift registers with the same cyclic structure. Discret. Math. Appl. 20(2), 127–155 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Green D.H., Dimond K.R.: Nonlinear product-feedback shift registers. Proc. IEE 117(4), 681–686 (1970).Google Scholar
  9. 9.
    Mykkeltveit J., Siu M.K., Tong P.: On the cycle structure of some nonlinear shift register sequences. Inf. Control 43(2), 202–215 (1979).CrossRefzbMATHGoogle Scholar
  10. 10.
    Hu H., Gong G.: Periods on two kinds of nonlinear feedback shift registers with time varying feedback functions. Int. J. Found. Comput. Sci 22(6), 1317–1329 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ma Z., Qi W.F., Tian T.: On the decomposition of an NFSR into the cascade connection of an NFSR into an LFSR. J. Complex 29(2), 173–181 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Zhang J.M., Qi W.F., Tian T., Wang Z.X.: Further Results on the Decomposition of an NFSR Into the Cascade Connection of an NFSR Into an LFSR. IEEE Trans. Inf. Theory 61(1), 645–654 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Tian T., Qi W.F.: On Decomposition of an NFSR into a Cascade Connection of Two Smaller NFSRs. Cryptol. ePrint Archive. http://eprint.iacr.org/2014/536.
  14. 14.
    Golomb S.W.: Shift Register Sequences. Holden-Dan Inc, San Francisco (1967).zbMATHGoogle Scholar
  15. 15.
    Lidl R., Niederreiter H.: Finite Fields. Addison-Wesley, Reading (1983).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Digital Switching System Engineering and Technological Research CenterZhengzhouChina

Personalised recommendations