Skip to main content
Log in

Identifying an unknown code by partial Gaussian elimination

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We consider in this paper the problem of reconstructing a linear code from a set of noisy codewords. We revisit the algorithms that have been devised for solving this problem and show that by generalizing and mixing two approaches that have been proposed in this setting, we obtain a significantly better algorithm. It basically consists in setting up a matrix whose rows are the noisy codewords, then running a partial Gaussian algorithm on it and detecting a small set of columns outside the echelon part of the matrix whose sum is sparse. We view the last task of the algorithm as an instance of the well known close neighbors search problem and we use an algorithm due to Dubiner to solve it more efficiently than the naive projection method which is generally invoked in this case. We analyze the complexity of our algorithm by focusing on an important practical case, namely when the code is an LDPC code. In doing so, we also obtain a result of independent interest, namely a tight upper-bound on the expected weight distribution of the dual of an LDPC code in a form that allows to derive an asymptotic formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Gaussian elimination is actually performed there with column operations, but this is not essential: the complexity is actually of the same order.

References

  1. Andoni A., Indyk P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Commun. ACM 51(1), 117–122 (2008).

    Article  Google Scholar 

  2. Andoni A., Indyk P.: Nearest neighbors in high-dimensional spaces. In: Goodman J.E., O’Rourke J., Tóth C.D. (eds.) Handbook of Discrete and Computational Geometry, 3rd edn, ch. 43. CRC Press, Boca Ratin (2017).

  3. Andoni A., Indyk P., Nguyen H.L., Razenshteyn I.: Beyond locality-sensitive hashing. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (Philadelphia, PA, USA), SODA ’14, Society for Industrial and Applied Mathematics, pp. 1018–1028 (2014).

  4. Andoni A., Razenshteyn I.P.: Optimal data-dependent hashing for approximate near neighbors. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, ACM, pp. 793–801 (2015).

  5. Barbero Á.I., Ytrehus Ø.: Modifications of the rao-nam cryptosystem. In: Buchmann J., Høholdt T., Stichtenoth H., Tapia-Recillas H., (eds.) Coding Theory, Cryptography and Related Areas: Proceedings of an International Conference on Coding Theory, Cryptography and Related Areas, held in Guanajuato, Mexico, in April 1998. Springer, Berlin, pp. 1–12 (2000).

  6. Barbier J.: Reconstruction of turbo-code encoders. In: Proceedings of SPIE, vol. 5819, pp. 463–473 (2005).

  7. Barbier J.: Analyse de canaux de communication dans un contexte non coopératif. PhD thesis, École Polytechnique (2007).

  8. Barbier J., Sicot G., Houcke S.: Algebraic approach of the reconstruction of linear and convolutional error correcting codes. In: World Academy of Science, Engineering and Technology, vol. 16, pp. 66–71 (2006).

  9. Becker A., Ducas L., Gama N., Laarhoven T.: New directions in nearest neighbor searching with applications to lattice sieving. IACR Cryptology ePrint Archive, Report 2015/1128 (2015). http://eprint.iacr.org/2015/1128.

  10. Bellard M., Tillich J.-P.: Detecting and reconstructing an unknown convolutional code by counting collisions. In: Proceedings of IEEE International Symposium on Information Theory—ISIT (Honolulu, Hawaii, USA), pp. 2967–2971 (2014).

  11. Both L., May A.: Optimizing BJMM with nearest neighbors: full decoding in \(2^{2/21 n}\) and McEliece security. In: WCC workshop on coding and cryptography (2017). http://wcc2017.suai.ru/Proceedings_WCC2017.zip.

  12. Both L., May A.: Decoding linear codes with high error rate and its impact for LPN security. In: Lange T., Steinwandt R. (eds.) Post-quantum cryptography 2018 (Fort Lauderdale, FL, USA), vol. 10786, pp. 25–46. LNCS. Springer, Berlin (2018).

  13. Bringer J., Chabanne H.: Code reverse engineering problem for identification codes. IEEE Trans. Inf. Theory 58(4), 2406–2412 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  14. Burshtein D., Miller G.: Asymptotic enumeration methods for analyzing LDPC codes. IEEE Trans. Inf. Theory 50(6), 1115–1131 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  15. Chabot C.: Reconstruction of families of codes. application to cyclic codes. In: Workshop on Coding and Cryptography (WCC) (Ullensvang, Norway) (2009).

  16. Cluzeau M., Finiasz M.: Reconstruction of punctured convolutional codes. In: IEEE Information Theory Workshop (ITW) (Taormina, Italy) (2009).

  17. Cluzeau M., Finiasz M.: Recovering a code’s length and synchronization from a noisy intercepted bitstream. In: Proceedings of IEEE International Symposium Information Theory—ISIT (Seoul, Korea), pp. 2737–2741 (2009).

  18. Cluzeau M., Tillich J.-P.: On the code reverse engineering problem. In Proceedings of IEEE International Symposium Information Theory—ISIT (Toronto, Canada), pp. 634–638 (2008).

  19. Cluzeau M., Finiasz M., Tillich J.-P.: Methods for the Reconstruction of Parallel Turbo Codes. In: Proceedings of IEEE International Symposium Information Theory—ISIT (Austin, Texas, USA), pp. 2008–2012 (2010).

  20. Côte M., Sendrier,N.: Reconstruction of convolutional codes from noisy observation. In Proceedings of IEEE International Symposium Information Theory—ISIT (Seoul, Korea), pp. 546–550 (2009).

  21. Côte M., Sendrier N.: Reconstruction of a turbo-code interleaver from noisy observation. In: Proceedings of IEEE International Symposium Information Theory—ISIT (Austin, Texas, USA), pp. 2003–2007 (2010).

  22. Deshpande A.J.: Sampling-based algorithms for dimension reduction. PhD thesis, Massachusetts Institute of Technology (2007).

  23. Di C., Richardson T., Urbanke R.: Weight distribution of low-density parity-check codes. IEEE Trans. Inf. Theory 52(11), 4839–4855 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  24. Dingel J., Hagenauer J.: Parameter estimation of a convolutional encoder from noisy observation. In: Proceedings of IEEE International Symposium on Information Theory—ISIT (Nice, France, June 2007), pp. 1776–1780 (2007).

  25. Dubiner M.: Bucketing coding and information theory for the statistical high-dimensional nearest-neighbor problem. IEEE Trans. Inf. Theory 56(8), 4166–4179 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  26. Dumer I.: On minimum distance decoding of linear codes. In: Proceedings of 5th Joint Soviet-Swedish International Workshop Information Theory (Moscow), pp. 50–52 (1991).

  27. Esmaeili M., Dakhilalian M., Gulliver T.A.: New secure channel coding scheme based on randomly punctured quasi-cyclic-low density parity check codes. IET Commun. 8(14), 2556–2562 (2014).

    Article  Google Scholar 

  28. Filiol E.: Reconstruction of convolutional encoders over \(GF(q)\). In: Cryptography and Coding: 6th IMA International Conference, pp. 101–109 (1997).

  29. Filiol E.: Reconstruction of punctured convolutional encoders. In: Proceedings of IEEE International Symposium on Information Theory and Applications (ISITA) (2000).

  30. Forney G.D.J.: Codes on graphs: normal realizations. IEEE Trans. Inf. Theory 47(2), 520–548 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  31. Gallager R.G.: Low Density Parity Check Codes. M.I.T. Press, Cambridge, Massachusetts (1963).

    Book  MATH  Google Scholar 

  32. Gionis A., Indyk P., Motwani R.: Similarity search in high dimensions via hashing. In: Proceedings of the 25th VLDB Conference, pp. 518–529 (1999).

  33. Gordon D.M., Miller V.S., Ostapenko P.: Optimal hash functions for approximate matches on the \(n\)-cube. IEEE Trans. Inf. Theory 56(3), 984–991 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  34. Har-Peled S., Indyk P., Motwani R.: Approximate nearest neighbor: towards removing the curse of dimensionality. Theory Comput. 8(14), 321–350 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  35. Indyk P., Motwani R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing (New York, NY, USA), STOC ’98, ACM, pp. 604–613 (1998).

  36. Lu P., Shen L., Luo X., Zou Y.: Blind recognition of punctured convolutional codes. In: Proceedings of IEEE International Symposium on Information Theory—ISIT (Chicago, USA), p. 457 (2004).

  37. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes, 5th edn. North-Holland, Amsterdam (1986).

    MATH  Google Scholar 

  38. Mafakheri B., Eghlidos T., Pilaram H.: An efficient secure channel coding scheme based on polar codes. ISC Int. J. Inf. Secur. 9(2), 13–20 (2017).

    Google Scholar 

  39. Marazin M.: Reconnaissance en aveugle de codeur à base de code convolutif: contribution à la mise en oeuvre d’un récepteur intelligent. PhD thesis, Université de Bretagne Occidentale (2009).

  40. Marazin M., Gautier R., Burel G.: Algebraic method for blind recovery of punctured convolutional encoders from an erroneous bitstream. IET Signal Process. 6(2), 122–131 (2012).

    Article  MathSciNet  Google Scholar 

  41. Matsui M.: Linear cryptanalysis method for DES cipher. In: Proceedings of Advances in Cryptology—EUROCRYPT ’93, Workshop on the Theory and Application of of Cryptographic Techniques, Lofthus, Norway, May 23–27, 1993, vol. 765. Lecture Notes in Computer Science. Springer, pp. 386–397 (1993).

  42. May A., Ozerov I.: On computing nearest neighbors with applications to decoding of binary linear codes. In: Oswald E., Fischlin M. (eds.) Advances in Cryptology—EUROCRYPT 2015, vol. 9056, pp. 203–228. LNCS. Springer, Berlin (2015).

  43. Naseri A., Azmoon O., Fazeli S.: Blind recognition algorithm of turbo codes for communication intelligence systems. Int. J. Comput. Sci. Issues 8(1), 68–72 (2011).

    Google Scholar 

  44. Rao T.R.N., Nam K.: Private-key algebraic-coded cryptosystems. In: Advances in cryptology—CRYPTO’86, vol. 263, pp. 35–48. LNCS. Springer, Berlin (1986).

  45. Rathi V.: On the asymptotic weight distribution of regular LDPC ensembles. In: IEEE Proceedings of International Symposium on Information Theory, 2005 (ISIT 2005), pp. 2161–2165 (2005).

  46. Rice B.: Determining the parameters of a rate \(\frac{1}{n}\) convolutional encoder over \({GF}(q)\). In: Third International Conference on Finite Fields and Applications (Glasgow, 1995).

  47. Richardson T., Urbanke R.: Modern Coding Theory. Cambridge University Press, Cambridge (2008).

    Book  MATH  Google Scholar 

  48. Rosen G.L.: Examining coding structure and redundancy in DNA. IEEE Eng. Med. Biol. 25(1), 62–68 (2006).

    Article  Google Scholar 

  49. Sicot G., Houcke S., Barbier J.: Blind detection of interleaver parameters. Signal Process. 89(4), 450–462 (2009).

    Article  MATH  Google Scholar 

  50. Sobhi Afshar A.A., Eghlidos T., Aref M.R.: Efficient secure channel coding based on quasi-cyclic low-density parity-check codes. IET Commun. 3(2), 279–292 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  51. Struik R., Tilburg J.V.: The Rao-Nam scheme is insecure against a chosen-plaintext attack. In: Advances in Cryptology—CRYPTO’87, vol. 293, pp. 445–457. LNCS. Springer, Berlin (1987).

  52. Tillich, J.-P., Tixier, A., Sendrier, N.: Recovering the interleaver of an unknown turbo-code. In: Proceedings of IEEE International Symposium Information Theory—ISIT (Honolulu, Hawaii, USA), pp. 2784–2788 (2014).

  53. Tixier A.: Blind identification of an unknown interleaved convolutional code. In: IEEE International Symposium on Information Theory, ISIT 2015, Hong Kong, China, June 14–19, 2015, pp. 71–75 (2015).

  54. Tixier A.: Blind identification of an unknown interleaved convolutional code. arXiv:1501.03715 (2015).

  55. Tixier A.: Reconnaissance de codes correcteurs (Blind identification of error correcting codes). PhD thesis, Pierre and Marie Curie University, Paris, France (2015).

  56. Valembois A.: Detection and recognition of a binary linear code. Discret. Appl. Math. 111, 199–218 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  57. Valiant L.G.: Graph-theoretic arguments in low-level complexity. In: Proceedings of Mathematical Foundations of Computer Science 1977, 6th Symposium, Tatranska Lomnica, Czechoslovakia, September 5–9, 1977, vol. 53, pp. 162–176. LNCS. Springer, Berlin (1977).

  58. Wang J., Yue Y., Yao J.: A method of blind recognition of cyclic code generator polynomial. In: IEEE 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM) (2010).

  59. Wang L., Hu Y., Hao S., Qi L.: The method of estimating the length of linear cyclic code based on the distribution of code weight. In: IEEE 2nd International Conference on Information Science and Engineering (ICISE), pp. 2459–2462 (2010).

  60. Wang Z.H.F., Zhou Y.: A method for blind recognition of convolution code based on Euclidean algorithm. In: International Conference on Wireless Communications, Networking and Mobile Computing (Shanghai, China), pp. 1414–1417 (2007).

  61. Wilf H.: Generatingfunctioology, 2nd edn. Academic Press, Cambridge (1994).

    Google Scholar 

  62. Yardi A.-D., Vijayakumaran S., Kumar A.: Blind reconstruction of binary cyclic codes. In: Proceedings of the European Wireless 2014 (2014).

  63. Zhou J., Huang Z., Su S., Yang S.: Blind recognition of binary cyclic codes. In: EURASIP Journal on Wireless Communications and Networking (2013).

Download references

Acknowledgements

We wish to thank the anonymous reviewers for their work and their comments. They were very helpful for improving the quality of our article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Tillich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.

Part of this work was supported by the Commission of the European Communities through the Horizon 2020 program under Project Number 645622 PQCRYPTO.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrier, K., Tillich, JP. Identifying an unknown code by partial Gaussian elimination. Des. Codes Cryptogr. 87, 685–713 (2019). https://doi.org/10.1007/s10623-018-00593-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-00593-7

Keywords

Mathematics Subject Classification

Navigation