Designs, Codes and Cryptography

, Volume 86, Issue 5, pp 1063–1083 | Cite as

Constructions of cyclic quaternary constant-weight codes of weight three and distance four

Article
  • 106 Downloads

Abstract

A cyclic \((n,d,w)_q\) code is a cyclic q-ary code of length n, constant-weight w and minimum distance d. A cyclic \((n,d,w)_q\) code with the largest possible number of codewords is said to be optimal. Optimal nonbinary cyclic \((n,d,w)_q\) codes were first studied in our recent paper (Lan et al. in IEEE Trans Inf Theory 62(11):6328–6341, 2016). In this paper, we continue to discuss the constructions of optimal cyclic \((n,4,3)_q\) codes. We establish the connection between cyclic \((n,4,3)_{q}\) codes and \(q-1\) mutually orbit-disjoint cyclic (n, 3, 1) difference packings (briefly (n, 3, 1)-CDPs). For the case of \(q=4\), we construct three mutually orbit-disjoint (n, 3, 1)-CDPs by constructing a pair of strongly orbit-disjoint (n, 3, 1)-CDPs, which are obtained from Skolem-type sequences. As a consequence, we completely determine the number of codewords of an optimal cyclic \((n,4,3)_{4}\) code.

Keywords

Constant-weight code Cyclic Optimal Cyclic difference packing Orbit-disjoint 

Mathematics Subject Classification

94B25 

Notes

Acknowledgements

Supported by the NSFC under Grant 11431003 (Y. Chang), and the NSFC under Grant 11401582 and the NSFHB under Grant A2015507019 (L. Wang).

References

  1. 1.
    Abel R.J.R., Buratti M.: Some progress on (\(v,4,1\)) difference families and optical orthogonal codes. J. Comb. Theory (A) 106(1), 59–75 (2004).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Baker C.A.: Extended Skolem sequences. J. Comb. Des. 3(5), 363–379 (1995).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Baker C.A., Shalaby N.: Disjoint Skolem sequences and related disjoint structures. J. Comb. Des. 1(5), 329–345 (1993).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bao J., Ji L., Li Y., Wang C.: Orbit-disjoint regular (\(n, 3, 1\))-CDPs and their applications to multilength OOCs. Finite Fields Appl. 35(C), 139–158 (2015).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bermond J.C., Brouwer A.E., Germa A.: Triple Systems and Associated Differences, pp. 1–7. Stichting Mathematisch Centrum Zuivere Wiskunde, Amsterdam (1976).Google Scholar
  6. 6.
    Bitan S., Etzion T.: Constructions for optimal constant weight cyclically permutable codes and difference families. IEEE Trans. Inf. Theory 41(1), 77–87 (1995).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bose R.C.: On the construction of balanced incomplete block designs. Ann. Hum. Genet. 9(4), 353–399 (1939).MATHGoogle Scholar
  8. 8.
    Buratti M.: Cyclic designs with block size 4 and related optimal optical orthogonal codes. Des. Codes Cryptogr. 26(1), 111–125 (2002).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chang Y., Ji L.: Optimal \((4up,5,1)\) optical orthogonal codes. J. Comb. Des. 12(5), 346–361 (2004).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chang Y., Yin J.: Further results on optimal optical orthogonal codes with weight 4. Discret. Math. 279(1–3), 135–151 (2004).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chang Y., Fuji-Hara R., Miao Y.: Combinatorial constructions of optimal optical orthogonal codes with weight 4. IEEE Trans. Inf. Theory 49(5), 1283–1292 (2003).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Cheng Q., Wan D.: On the list and bounded distance decodability of Reed-Solomon codes. SIAM J. Comput. 37(1), 195–207 (2007).Google Scholar
  13. 13.
    Cheng Q., Wan D.: Complexity of decoding positive rate Reed-Solomon codes. IEEE Trans. Inf. Theory 56(10), 5217–5222 (2010).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Chien R.T.: Cyclic decoding procedure for the Bose-Chaudhuri-Hocquenghem codes. IEEE Trans. Inf. Theory 10(4), 357–363 (1964).CrossRefMATHGoogle Scholar
  15. 15.
    Chung F.R.K., Salehi J.A., Wei V.K.: Optical orthogonal codes: design, analysis and applications. IEEE Trans. Inf. Theory 35(3), 595–604 (1989).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Davies R.O.: On Langford’s problem (II). Gaz. Math. 43, 253–255 (1959).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Ding C.: Cyclic codes from the two-prime sequences. IEEE Trans. Inf. Theory 58(6), 3881–3891 (2012).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Forney G.D.: On decoding BCH codes. IEEE Trans. Inf. Theory 11(4), 549–557 (1965).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Ge G., Yin J.: Constructions for optimal \((v,4,1)\) optical orthogonal codes. IEEE Trans. Inf. Theory 47(7), 2998–3004 (2001).MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Gilbert E.N.: Cyclically permutable error-correcting codes. IEEE Trans. Inf. Theory 9(3), 175–182 (1963).CrossRefMATHGoogle Scholar
  21. 21.
    Huang Y., Chang Y.: Two classes of optimal two-dimensional OOCs. Des. Codes Cryptogr. 63(3), 357–363 (2012).MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).CrossRefMATHGoogle Scholar
  23. 23.
    Lan L., Chang Y., Wang L.: Cyclic constant-weight codes: upper bounds and new optimal constructions. IEEE Trans. Inf. Theory 62(11), 6328–6341 (2016).MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Linek V., Mor S.: On partitions of \(\{1,\cdots, 2m+ 1\}\setminus \{k\}\) into differences \(d,\cdots, d+m-1\): extended Langford sequences of large defect. J. Comb. Des. 12(6), 421–442 (2004).MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Nguyen Q.A., Györfi L., Massey J.L.: Constructions of binary constant-weight cyclic codes and cyclically permutable codes. IEEE Trans. Inf. Theory 38(3), 940–949 (1992).MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    O’Keefe E.S.: Verification of a conjecture of Th. Skolem. Math. Scand. 9, 80–82 (1961).MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Prange E.: Some Cyclic Error-correcting Codes with Simple Decoding Algorithms. Technical Report TN-58-156. Air Force Cambridge Research Center, Cambridge, MA (1958).Google Scholar
  28. 28.
    Simpson J.E.: Langford sequence: perfect and hooked. Discret. Math. 44(1), 97–104 (1983).MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Skolem T.: On certain distributions of integers in pairs with given differences. Math. Scand. 5, 57–68 (1957).MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    van Lint J.H., Wilson R.M.: On the minimum distance of cyclic codes. IEEE Trans. Inf. Theory 32(32), 23–40 (1986).MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Yin J.: A general construction for optimal cyclic packing designs. J. Comb. Theory (A) 97(2), 272–284 (2002).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Institute of MathematicsBeijing Jiaotong UniversityBeijingPeople’s Republic of China
  2. 2.Basic Subject Application and Development Research CenterChinese People’s Armed Police Force AcademyLangfangPeople’s Republic of China

Personalised recommendations