Designs, Codes and Cryptography

, Volume 86, Issue 2, pp 365–386 | Cite as

Message encoding and retrieval for spread and cyclic orbit codes

Part of the following topical collections:
  1. Special Issue on Network Coding and Designs


Spread codes and cyclic orbit codes are special families of constant dimension subspace codes. These codes have been well-studied for their error correction capability, transmission rate and decoding methods, but the question of how to encode and retrieve messages has not been investigated. In this work we show how a message set of consecutive integers can be encoded and retrieved for these two code families.


Network coding Subspace codes Enumerative coding Orbit codes Finite spreads Discrete logarithm 

Mathematics Subject Classification

94B60 11T71 



The author would like to thank Yuval Cassuto for his reference to enumerative coding, John Sheekey for his advice on Desarguesian spreads, and Margreta Kuijper for fruitful discussions and comments on this work. The author was partially supported by Swiss National Science Foundation Fellowship No. 147304.


  1. 1.
    Bader L., Lunardon G.: Desarguesian spreads. Ric. Mat. 60(1), 15–37 (2011).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ben-Sasson E., Etzion T., Gabizon A., Raviv N.: Subspace polynomials and cyclic subspace codes. IEEE Trans. Inf. Theory 62(3), 1157–1165 (2016).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bossert M., Gabidulin E.M.: One family of algebraic codes for network coding. In: Proceedings of the 2009 IEEE International Symposium on Information Theory (ISIT), pp. 2863–2866 (2009).Google Scholar
  4. 4.
    Cover T.M.: Enumerative source encoding. IEEE Trans. Inf. Theory 19(1), 73–77 (1973).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Etzion T., Silberstein N.: Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams. IEEE Trans. Inf. Theory 55(7), 2909–2919 (2009).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Etzion T., Silberstein N.: Codes and designs related to lifted MRD codes. IEEE Trans. Inf. Theory 59(2), 1004–1017 (2013).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Etzion T., Vardy A.: Error-correcting codes in projective space. IEEE Trans. Inf. Theory 57(2), 1165–1173 (2011).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gabidulin E.M., Pilipchuk N.I.: Multicomponent network coding. In: Proceedings of the Seventh International Workshop on Coding and Cryptography (WCC), Paris, France, pp. 443–452 (2011).Google Scholar
  9. 9.
    Gadouleau M., Yan Z.: Constant-rank codes and their connection to constant-dimension codes. IEEE Trans. Inf. Theory 56(7), 3207–3216 (2010).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gathen J.von zur: Efficient and optimal exponentiation in finite fields. Comput. Complex. 1(4), 360–394 (1991).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gathen J.von zur, Gerhard J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, Cambridge (2003).MATHGoogle Scholar
  12. 12.
    Gluesing-Luerssen H., Morrison K., Troha C.: Cyclic orbit codes and stabilizer subfields. Adv. Math. Commun. 9(2), 177–197 (2015).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gorla E., Ravagnani A.: Partial spreads in random network coding. Finite Fields Appl. 26, 104–115 (2014).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gorla E., Manganiello F., Rosenthal J.: An algebraic approach for decoding spread codes. Adv. Math. Commun. (AMC) 6(4), 443–466 (2012).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hirschfeld J.W.P.: Projective Geometries Over Finite Fields. Oxford Mathematical Monographs, 2nd edn. The Clarendon Press Oxford University Press, New York (1998).MATHGoogle Scholar
  16. 16.
    Kohnert A., Kurz S.: Construction of large constant dimension codes with a prescribed minimum distance. In Calmet J., Geiselmann W., Müller-Quade J. (eds.), MMICS, Lecture Notes in Computer Science, vol. 5393, pp. 31–42. Springer, New York (2008).Google Scholar
  17. 17.
    Kötter R., Kschischang F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54(8), 3579–3591 (2008).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lidl R., Niederreiter H.: Introduction to Finite Fields and their Applications. Cambridge University Press, Cambridge, Revised edition (1994).Google Scholar
  19. 19.
    Manganiello F., Trautmann A.-L.: Spread decoding in extension fields. Finite Fields Appl. 25, 94–105 (2014).MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Manganiello F., Gorla E., Rosenthal J.: Spread codes and spread decoding in network coding. In: Proceedings of the 2008 IEEE International Symposium on Information Theory (ISIT), Toronto, Canada, pp. 851–855 (2008).Google Scholar
  21. 21.
    Manganiello F., Trautmann A.-L., Rosenthal J.: On conjugacy classes of subgroups of the general linear group and cyclic orbit codes. In: Proceedings of the 2011 IEEE International Symposium on Information Theory (ISIT), pp. 1916–1920, St. Petersburg, Russia (2011).Google Scholar
  22. 22.
    Menezes A.J., van Oorschot P.C., Vanstone S.A.: Handbook of applied cryptography. CRC Press Series on Discrete Mathematics and its Applications. CRC Press, Boca Raton, FL (1997). With a foreword by Ronald L. Rivest.Google Scholar
  23. 23.
    Odlyzko A.M.: Discrete logarithms in finite fields and their cryptographic significance. In: Beth T., Cot N., Ingemarsson I. (eds.) Advances in Cryptology. Lecture Notes in Computer Science, vol. 209, pp. 224–314. Springer, Berlin (1985).Google Scholar
  24. 24.
    Rosenthal J., Trautmann A.-L.: A complete characterization of irreducible cyclic orbit codes and their Plücker embedding. Des. Codes Cryptogr. 66, 275–289 (2013).MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Schwartz M.: Gray codes and enumerative coding for vector spaces. IEEE Trans. Inf. Theory 60(1), 271–281 (2014).MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Silberstein N., Etzion T.: Enumerative coding for Grassmannian space. IEEE Trans. Inf. Theory 57(1), 365–374 (2011).MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Silberstein N., Trautmann A.-L.: Subspace codes based on graph matchings, ferrers diagrams, and pending blocks. IEEE Trans. Inf. Theory 61(7), 3937–3953 (2015).MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Silva D., Kschischang F.R., Kötter R.: A rank-metric approach to error control in random network coding. IEEE Trans. Inf. Theory 54(9), 3951–3967 (2008).MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Skachek V.: Recursive code construction for random networks. IEEE Trans. Inf. Theory 56(3), 1378–1382 (2010).MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Trautmann A.-L.: Constructions, Decoding and Automorphisms of Subspace Codes. PhD thesis, University of Zurich, Switzerland (2013).Google Scholar
  31. 31.
    Trautmann A.-L.: Message encoding for spread and orbit codes. In: Proceedings of the 2014 IEEE International Symposium on Information Theory (ISIT), pp. 2594–2598 (2014).Google Scholar
  32. 32.
    Trautmann A.-L., Rosenthal J.: New improvements on the echelon-Ferrers construction. In: Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems–MTNS, pp. 405–408, Budapest, Hungary (2010).Google Scholar
  33. 33.
    Trautmann A.-L., Manganiello F., Rosenthal J.: Orbit codes—a new concept in the area of network coding. In: IEEE Information Theory Workshop (ITW), pp. 1–4, Dublin, Ireland (2010).Google Scholar
  34. 34.
    Trautmann A.-L., Manganiello F., Braun M., Rosenthal J.: Cyclic orbit codes. IEEE Trans. Inf. Theory 59(11), 7386–7404 (2013).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Faculty of Mathematics and StatisticsUniversity of St. GallenSt. GallenSwitzerland

Personalised recommendations