Combinatorial constructions of packings in Grassmannian spaces

Article
  • 68 Downloads

Abstract

The problem of packing n-dimensional subspaces of m-dimensional Euclidean space such that these subspaces are as far apart as possible was introduced by Conway, Hardin and Sloane. It can be seen as a higher dimensional version of spherical codes or equiangular lines. In this paper, we first give a general construction of equiangular lines, and then present a family of equiangular lines with large size from direct product difference sets. Meanwhile, for packing higher dimensional subspaces, we give three constructions of optimal packings in Grassmannian spaces based on difference sets and Latin squares. As a consequence, we obtain many new classes of optimal Grassmannian packings.

Keywords

Grassmannian packing Equiangular line Difference set Latin square 

Mathematics Subject Classification

Primary: 52C17 Secondary: 14M15 94B60 

Notes

Acknowledgements

The authors express their gratitude to the anonymous reviewers for their detailed and constructive comments which are very helpful to the improvement of the presentation of this paper. Research supported by the National Natural Science Foundation of China under Grant Nos. 11431003 and 61571310, Beijing Hundreds of Leading Talents Training Project of Science and Technology, and Beijing Municipal Natural Science Foundation.

References

  1. 1.
    Appleby D.M.: Symmetric informationally complete-positive operator valued measures and the extended Clifford group. J. Math. Phys. 46(5), 052107, 29 (2005).Google Scholar
  2. 2.
    Ashikhmin A., Calderbank A.R.: Grassmannian packings from operator Reed–Muller codes. IEEE Trans. Inf. Theory 56(11), 5689–5714 (2010).MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bodmann B.G., Haas J.I.: Maximal orthoplectic fusion frames from mutually unbiased bases and block designs. arXiv: 1607.04546.
  4. 4.
    Calderbank A.R., Hardin R.H., Rains E.M., Shor P.W., Sloane N.J.A.: A group-theoretic framework for the construction of packings in Grassmannian spaces. J. Algebraic Comb. 9(2), 129–140 (1999).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Colbourn C.J., Dinitz J.H. (eds.): Handbook of Combinatorial Designs. Discrete Mathematics and Its Applications (Boca Raton), 2nd edn. Chapman & Hall/CRC, Boca Raton (2007).Google Scholar
  6. 6.
    Conway J.H., Hardin R.H., Sloane N.J.A.: Packing lines, planes, etc.: packings in Grassmannian spaces. Exp. Math. 5(2), 139–159 (1996).MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Davis J.A., Jedwab J.: A survey of Hadamard difference sets. In: Groups, Difference Sets, and the Monster (Columbus, OH, 1993), Ohio State University Mathematical Research Institute Publications, vol. 4, pp. 145–156. de Gruyter, Berlin (1996).Google Scholar
  8. 8.
    de Caen D.: Large equiangular sets of lines in Euclidean space. Electron. J. Comb. 7, R55 (2000).Google Scholar
  9. 9.
    Delsarte P., Goethals J.M., Seidel J.J.: Bounds for systems of lines, and jacobi polynomials. Philips Res. Rep. 30, 91–105 (1975).MATHGoogle Scholar
  10. 10.
    Dhillon I.S., Heath Jr. R.W., Strohmer T., Tropp J.A.: Constructing packings in Grassmannian manifolds via alternating projection. Exp. Math. 17(1), 9–35 (2008).MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Ganley M.J.: Direct product difference sets. J. Comb. Theory Ser. A 23(3), 321–332 (1977).MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Greaves G., Koolen J.H., Munemasa A., Szöllősi F.: Equiangular lines in Euclidean spaces. J. Comb. Theory Ser. A 138, 208–235 (2016).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Haantjes J.: Equilateral point-sets in elliptic two- and three-dimensional spaces. Nieuw Arch. Wiskunde 2(22), 355–362 (1948).MathSciNetMATHGoogle Scholar
  14. 14.
    Jedwab J., Wiebe A.: Large sets of complex and real equiangular lines. J. Comb. Theory Ser. A 134, 98–102 (2015).MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Jedwab J., Wiebe A.: Constructions of complex equiangular lines from mutually unbiased bases. Des. Codes Cryptogr. 80(1), 73–89 (2016).MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Kocák T., Niepel M.: Families of optimal packings in real and complex grassmannian spaces. J. Algebraic Comb. 45(1), 129–148 (2017). doi: 10.1007/s10801-016-0702-x.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    König H.: Cubature formulas on spheres. In: Hauffmann W., Jetter K., Reimer M. (eds.) Advances in multivariate approximation (Witten-Bommerholz, 1998). Mathematical Research, vol. 107, pp. 201–211. Wiley, Berlin (1999).Google Scholar
  18. 18.
    Lehmer E.: On residue difference sets. Can. J. Math. 5, 425–432 (1953).MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Lemmens P.W.H., Seidel J.J.: Equiangular lines. J. Algebra 24, 494–512 (1973).MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    McFarland R.L.: A family of difference sets in non-cyclic groups. J. Comb. Theory Ser. A 15, 1–10 (1973).MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Paley R.E.A.C.: On orthogonal matrices. J. Math. Phys. 12, 311–320 (1933).MATHCrossRefGoogle Scholar
  22. 22.
    Pott A.: Finite Geometry and Character Theory. Lecture Notes in Mathematics, vol. 1601. Springer, Berlin (1995).Google Scholar
  23. 23.
    Roy A.: Bounds for codes and designs in complex subspaces. J. Algebraic Comb. 31(1), 1–32 (2010).MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Scott, A.J., Grassl, M.: Symmetric informationally complete positive-operator-valued measures: a new computer study. J. Math. Phys. 51(4), 042203, 16 (2010).Google Scholar
  25. 25.
    Shor P.W., Sloane N.J.A.: A family of optimal packings in Grassmannian manifolds. J. Algebraic Comb. 7(2), 157–163 (1998).MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Singer J.: A theorem in finite projective geometry and some applications to number theory. Trans. Am. Math. Soc. 43(3), 377–385 (1938).MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Weng G., Qiu W., Wang Z., Xiang Q.: Pseudo-Paley graphs and skew Hadamard difference sets from presemifields. Des. Codes Cryptogr. 44(1–3), 49–62 (2007).MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Whiteman A.L.: A family of difference sets. Ill. J. Math. 6, 107–121 (1962).MathSciNetMATHGoogle Scholar
  29. 29.
    Zauner G.: Quantum designs: foundations of a noncommutative design theory. Int. J. Quantum Inf. 9(1), 445–507 (2011).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Mathematical SciencesCapital Normal UniversityBeijingChina
  2. 2.School of Mathematical SciencesZhejiang UniversityHangzhouChina
  3. 3.Beijing Center for Mathematics and Information Interdisciplinary SciencesBeijingChina

Personalised recommendations