Designs, Codes and Cryptography

, Volume 86, Issue 2, pp 269–284 | Cite as

Network coding with flags

  • Dirk Liebhold
  • Gabriele Nebe
  • Angeles Vazquez-Castro
Part of the following topical collections:
  1. Special Issue on Network Coding and Designs


We develop a network coding technique based on flags of subspaces and a corresponding network channel model. To define error correcting codes we introduce a new distance on the flag variety, the Grassmann distance on flags and compare it to the commonly used gallery distance for full flags.


Network coding Spherical building Flag variety Error correcting codes Grassmann distance on flags 

Mathematics Subject Classification

20E42 94B99 20B30 



Dirk Liebhold is supported by the RTG 1632 of the DFG.


  1. 1.
    Abramenko P., Brown K.S.: Buildings Theory and Applications. Springer Graduate Texts in Mathematics, vol. 248. Springer, New York (2008).Google Scholar
  2. 2.
    Ahlswede R., Cai N., Li S.-Y.R., Yeung R.W.: Network information flow. IEEE Trans. Inf. Theory 46, 1204–1216 (2000).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Humphreys J.E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990).Google Scholar
  4. 4.
    Jones A.R.: A combinatorial approach to the double cosets of the symmetric group with respect to Young subgroups. Eur. J. Combin. 17, 647–655 (1996).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Kötter R., Kschischang F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54, 3579–3591 (2008).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Petersen T.K., Tenner B.E.: The depth of a permutation. J. Combin. 6, 145–178 (2015).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Silva D., Kschischang F.R., Kötter R.: A rank-metric approach to error control in random network coding. IEEE Trans. Inf. Theory 54, 3951–3967 (2008).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Sloane N.J.A. (ed): The On-Line Encyclopedia of Integer Sequences, published electronically at (2016). Accessed 31 May 2016.
  9. 9.
    Taylor D.E.: The Geometry of the Classical Groups. Heldermann Verlag, Berlin (1992).MATHGoogle Scholar
  10. 10.
    Vazquez-Castro M.A.: A geometric approach to dynamic network coding. In: IEEE Information Theory Workshop (2015).Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Lehrstuhl D für MathematikRWTH Aachen UniversityAachenGermany
  2. 2.Universitat Autonoma de BarcelonaBellaterraSpain

Personalised recommendations