Designs, Codes and Cryptography

, Volume 86, Issue 2, pp 341–363 | Cite as

On the genericity of maximum rank distance and Gabidulin codes

  • Alessandro Neri
  • Anna-Lena Horlemann-Trautmann
  • Tovohery Randrianarisoa
  • Joachim Rosenthal
Part of the following topical collections:
  1. Special Issue on Network Coding and Designs


We consider linear rank-metric codes in \({\mathbb {F}}_{q^m}^n\). We show that the properties of being maximum rank distance (MRD) and non-Gabidulin are generic over the algebraic closure of the underlying field, which implies that over a large extension field a randomly chosen generator matrix generates an MRD and a non-Gabidulin code with high probability. Moreover, we give upper bounds on the respective probabilities in dependence on the extension degree m.


Rank-metric codes Finite fields MRD codes Gabidulin codes 

Mathematics Subject Classification




This work was partially supported by SNF Grants Nos. 149716 and 169510.


  1. 1.
    Berger T.P.: Isometries for rank distance and permutation group of Gabidulin codes. IEEE Trans. Inf. Theory 49(11), 3016–3019 (2003). doi: 10.1109/TIT.2003.819322.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cossidente A., Marino G., Pavese F.: Non-linear maximum rank distance codes. Des. Codes Cryptogr. 79(3), 597–609 (2016). doi: 10.1007/s10623-015-0108-0.
  3. 3.
    de la Cruz J., Kiermaier M., Wassermann A., Willems W.: Algebraic structures of MRD codes. arXiv:1502.02711 [cs.IT] (2015).
  4. 4.
    Delsarte P.: Bilinear forms over a finite field, with applications to coding theory. J. Comb. Theory Ser. A 25(3), 226–241 (1978). doi: 10.1016/0097-3165(78)90015-8.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Gabidulin E.M.: Theory of codes with maximum rank distance. Probl. Pereda. Inf. 21(1), 3–16 (1985).MathSciNetMATHGoogle Scholar
  6. 6.
    Hartshorne R.: Algebraic Geometry, vol. 52. Springer, Berlin (2013).MATHGoogle Scholar
  7. 7.
    Horlemann-Trautmann A., Marshall K.: New criteria for MRD and Gabidulin codes and some rank-metric code constructions. arXiv:1507.08641 [cs.IT] (2015).
  8. 8.
    Kshevetskiy A., Gabidulin E.: The new construction of rank codes. Proc. Int. Symp. Inf. Theory 2005, 2105–2108 (2005). doi: 10.1109/ISIT.2005.1523717.Google Scholar
  9. 9.
    Lefschetz S.: Algebraic Geometry. Courier Corporation, Boston (2012).MATHGoogle Scholar
  10. 10.
    Lewin D., Vadhan S.: Checking polynomial identities over any field: towards a derandomization? In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 438–447. ACM (1998).Google Scholar
  11. 11.
    Lidl R., Niederreiter H.: Introduction to Finite Fields and their Applications. Cambridge University Press, Cambridge (1994). (Revised edition).CrossRefMATHGoogle Scholar
  12. 12.
    Morrison K.: Equivalence for rank-metric and matrix codes and automorphism groups of Gabidulin codes. IEEE Trans. Inf. Theory 60(11), 7035–7046 (2014). doi: 10.1109/TIT.2014.2359198.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Schwartz J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Sheekey J.: A new family of linear maximum rank distance codes. Adv. Math. Commun. 10(3), 475–488 (2016).Google Scholar
  15. 15.
    Sloane N.J.A., et al.: The on-line encyclopedia of integer sequences (2003).
  16. 16.
    Wan Z.X.: Geometry of Matrices. World Scientific, Singapore (1996). In memory of Professor L.K. Hua (1910–1985).CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.University of ZurichZurichSwitzerland
  2. 2.University of St. GallenSt. GallenSwitzerland

Personalised recommendations