Skip to main content
Log in

Idempotent and p-potent quadratic functions: distribution of nonlinearity and co-dimension

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The Walsh transform \(\widehat{Q}\) of a quadratic function \(Q:{\mathbb F}_{p^n}\rightarrow {\mathbb F}_p\) satisfies \(|\widehat{Q}(b)| \in \{0,p^{\frac{n+s}{2}}\}\) for all \(b\in {\mathbb F}_{p^n}\), where \(0\le s\le n-1\) is an integer depending on Q. In this article, we study the following three classes of quadratic functions of wide interest. The class \(\mathcal {C}_1\) is defined for arbitrary n as \(\mathcal {C}_1 = \{Q(x) = \mathrm{Tr_n}(\sum _{i=1}^{\lfloor (n-1)/2\rfloor }a_ix^{2^i+1})\;:\; a_i \in {\mathbb F}_2\}\), and the larger class \(\mathcal {C}_2\) is defined for even n as \(\mathcal {C}_2 = \{Q(x) = \mathrm{Tr_n}(\sum _{i=1}^{(n/2)-1}a_ix^{2^i+1}) + \mathrm{Tr_{n/2}}(a_{n/2}x^{2^{n/2}+1}) \;:\; a_i \in {\mathbb F}_2\}\). For an odd prime p, the subclass \(\mathcal {D}\) of all p-ary quadratic functions is defined as \(\mathcal {D} = \{Q(x) = \mathrm{Tr_n}(\sum _{i=0}^{\lfloor n/2\rfloor }a_ix^{p^i+1})\;:\; a_i \in {\mathbb F}_p\}\). We determine the generating function for the distribution of the parameter s for \(\mathcal {C}_1, \mathcal {C}_2\) and \(\mathcal {D}\). As a consequence we completely describe the distribution of the nonlinearity for the rotation symmetric quadratic Boolean functions, and in the case \(p > 2\), the distribution of the co-dimension for the rotation symmetric quadratic p-ary functions, which have been attracting considerable attention recently. Our results also facilitate obtaining closed formulas for the number of such quadratic functions with prescribed s for small values of s, and hence extend earlier results on this topic. We also present the complete weight distribution of the subcodes of the second order Reed–Muller codes corresponding to \(\mathcal {C}_1\) and \(\mathcal {C}_2\) in terms of a generating function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berlekamp E.R.: The weight enumerators for certain subcodes of the second order binary Reed–Muller codes. Inf. Control 17, 485–500 (1970).

  2. Berlekamp E.R., Sloane N.: The weight enumerator of second-order Reed–Muller codes. IEEE Trans. Inf. Theory 16, 745–751 (1970).

  3. Carlet C., Gao G., Liu W.: A secondary construction and a transformation on rotation symmetric functions, and their action on bent and semi-bent functions. J. Comb. Theory Ser. A 127, 161–175 (2014).

  4. Çeşmelioğlu A., Meidl W.: Non-weakly regular bent polynomials from vectorial quadratic functions. In: Pott A. et al. (eds.) Proceedings of the 11th International Conference on Finite Fields and their Applications. Contemporary Mathematics, pp. 83–95 (2015).

  5. Charpin P., Pasalic E., Tavernier C.: On bent and semi-bent quadratic Boolean functions. IEEE Trans. Inf. Theory 51, 4286–4298 (2005).

  6. Fitzgerald R.W.: Trace forms over finite fields of characteristic 2 with prescribed invariants. Finite Fields Appl. 15, 69–81 (2009).

  7. Fu F.W., Niederreiter H., Özbudak F.: Joint linear complexity of multisequences consisting of linear recurring sequences. Cryptogr. Commun. 1, 3–29 (2009).

  8. Helleseth T., Kholosha A.: Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory 52, 2018–2032 (2006).

  9. Hu H., Feng D.: On Quadratic bent functions in polynomial forms. IEEE Trans. Inf. Theory 53, 2610–2615 (2007).

  10. Kasami T.: The weight enumerators for several classes of subcodes of the 2nd order binary Reed-Muller codes. Inf. Control 18, 369–394 (1971).

  11. Kaşıkcı C., Meidl W., Topuzoğlu A.: Spectra of quadratic functions: Average behaviour and counting functions. Cryptogr. Commun. 8, 191–214 (2016).

  12. Khoo K., Gong G., Stinson D.: A new characterization of semi-bent and bent functions on finite fields. Des. Codes Cryptogr. 38, 279–295 (2006).

  13. Kocak N., Kocak O., Özbudak F., Saygi Z.: Characterization and enumeration of a class of semi-bent Boolean functions. Int. J. Inf. Coding Theory 3, 39–57 (2015).

  14. Li S., Hu L., Zeng X.: Constructions of \(p\)-ary quadratic bent functions. Acta Appl. Math. 100, 227–245 (2008).

  15. Meidl W., Topuzoğlu A.: Quadratic functions with prescribed spectra. Des. Codes Cryptogr. 66, 257–273 (2013).

  16. Meidl W., Roy S., Topuzoğlu A.: Enumeration of quadratic functions with prescribed Walsh spectrum. IEEE Trans. Inf. Theory 60, 6669–6680 (2014).

  17. Yu N.Y., Gong G.: Constructions of quadratic bent functions in polynomial forms. IEEE Trans. Inf. Theory 52, 3291–3299 (2006).

Download references

Acknowledgments

The first author gratefully acknowledges the support from The Danish Council for Independent Research (Grant No. DFF–4002-00367) and H.C. Ørsted COFUND Post-doc Fellowship from the project “Algebraic curves with many rational points”. The second author is supported by the Austrian Science Fund (FWF) Project No. M 1767-N26.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Meidl.

Additional information

This paper is dedicated to the memory of Tosun Terzioğlu.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.

Appendix

Appendix

We give some examples of generating functions for \(p=3\).

Example

\(n=9\cdot 13\): In this case, \(x^{9\cdot 13}-1 = (x-1)^9r_1^9r_2^9\) for prime self-reciprocal polynomials \(r_1,r_2\) both of degree 6. By Theorem 3,

$$\begin{aligned} \mathcal {G}_{9\cdot 13}^{(3)}(z) = \left( 1+2\sum _{j=1}^53^{j-1}z^{2j-1}\right) \left( 1+26\sum _{j=1}^93^{3(j-1)}z^{6j}\right) ^2. \end{aligned}$$

Expanding this polynomial we obtain

$$\begin{aligned}&\mathcal {G}_{9\cdot 13}^{(3)}(z)\\&\quad = 1+2\,z+6\,{z}^{3}+18\,{z}^{5}+52\,{z}^{6}+158\,{z}^{7}+474\,{z}^{9}+936\,{z}^{11}+2080\,{z}^{12}+6968\,{z}^{13}\\&\qquad +20904\,{z}^{15}+37440\,{z}^{17} +74412\,{z}^{18}+261144\,{z}^{19}+783432\,{z}^{21}+1339416\,{z}^{23}\\&\qquad +2501928\,{z}^{24}+9022104\,{z}^{25}+27066312\,{z}^{27}+45034704\,{z}^{29}+80857764\,{z}^{30}\\&\qquad +296819640\,{z}^{31}+890458920\,{z}^{33}+1455439752\,{z}^{35}+2542413744\,{z}^{36}\\&\qquad +9451146744\,{z}^{37}+28353440232\,{z}^{39}+45763447392\,{z}^{41}+78345032220\,{z}^{42}\\&\qquad +293980406616\,{z}^{43}+881941219848\,{z}^{45} +1410210579960\,{z}^{47}\\&\qquad +2377212120504\,{z}^{48}+8985055980888\,{z}^{49}+26955167942664\,{z}^{51}\\&\qquad +42789818169072\,{z}^{53}+71255926018836\,{z}^{54}+270881306544888\,{z}^{55}\\&\qquad +812643919634664\,{z}^{57}+1282606668339048\,{z}^{59}+1718301299950404\,{z}^{60}\\&\qquad + 7284422604917952\,{z}^{61}+21853267814753856\,{z}^{63}+30929423399107272\,{z}^{65}\\&\qquad +41239231198809696\,{z}^{66}+175266732594941208\,{z}^{67}+525800197784823624\,{z}^{69}\\ \end{aligned}$$
$$\begin{aligned}&\qquad +742306161578574528\,{z}^{71} +974276837071879068\,{z}^{72}+4175472158879481720\,{z}^{73}\\&\qquad +12526416476638445160\,{z}^{75}+17536983067293823224\,{z}^{77}\\&\qquad +22547549657949201288\,{z}^{78}+97706048517779872248\,{z}^{79}\\&\qquad +293118145553339616744\,{z}^{81}+405855893843085623184\,{z}^{83}\\&\qquad +507319867303857028980\,{z}^{84}+2232207416136970927512\,{z}^{85}\\&\qquad +6696622248410912782536\,{z}^{87}+9131757611469426521640\,{z}^{89}\\&\qquad +10958109133763311825968\,{z}^{90}+49311491101934903216856\,{z}^{91}\\&\qquad +147934473305804709650568\,{z}^{93} +197245964407739612867424\,{z}^{95}\\&\qquad +221901709958707064475852\,{z}^{96}+1035541313140632967553976\,{z}^{97}\\&\qquad +3106623939421898902661928\,{z}^{99} +3994230779256727160565336\,{z}^{101}\\&\qquad +3994230779256727160565336\,{z}^{102}+19971153896283635802826680\,{z}^{103}\\&\qquad +59913461688850907408480040\,{z}^{105}+71896154026621088890176048\,{z}^{107}\\&\qquad +53922115519965816667632036\,{z}^{108} +323532693119794900005792216\,{z}^{109}\\&\qquad +970598079359384700017376648\,{z}^{111}+970598079359384700017376648\,{z}^{113}\\&\qquad +2911794238078154100052129944\,{z}^{115} +8735382714234462300156389832\,{z}^{117} \end{aligned}$$

Example

\(n=9\cdot 14\): In this case, \(x^{9\cdot 14}-1 = (x-1)^9(x+1)^9r_1^9r_2^9\) for prime self-reciprocal polynomials \(r_1,r_2\) both of degree 6. By Theorem 4,

$$\begin{aligned}&\mathcal {G}_{9\cdot 14}^{(3)}(z) \\&\quad = \left( 1+2\sum _{j=1}^53^{j-1}z^{2j-1}\right) ^2\left( 1+26\sum _{j=1}^93^{3(j-1)}z^{6j}\right) ^2 \\&\quad = 1+4\,z+4\,{z}^{2}+12\,{z}^{3}+24\,{z}^{4}+36\,{z}^{5}+160\,{z}^{6}+316\,{z}^{7}+640\,{z}^{8}+948\,{z}^{9}+2868\,{z}^{10}\\&\qquad +1872\,{z}^{11}+11584\,{z}^{12}+13936\,{z}^{13}+39532\,{z}^{14}+41808\,{z}^{15}+151656\,{z}^{16}+74880\,{z}^{17}\\&\qquad +527472\,{z}^{18}+522288\,{z}^{19}+1651104\,{z}^{20}+1566864\,{z}^{21}+6065280\,{z}^{22}+2678832\,{z}^{23}\\&\qquad +19990152\,{z}^{24}+18044208\,{z}^{25}+60349536\,{z}^{26}+54132624\,{z}^{27}+216985392\,{z}^{28}\\&\qquad +90069408\,{z}^{29}+694967364\,{z}^{30}+593639280\,{z}^{31}+2055220128\,{z}^{32}\\&\qquad +1780917840\,{z}^{33}+7295622048\,{z}^{34}+2910879504\,{z}^{35}+22955416848\,{z}^{36}\nonumber \\&\qquad +18902293488\,{z}^{37}+66987075168\,{z}^{38}+56706880464\,{z}^{39}+235781239824\,{z}^{40}\\&\qquad +91526894784\,{z}^{41}+732961301436\,{z}^{42}+587960813232\,{z}^{43}+2119046585760\,{z}^{44}\\&\qquad +1763882439696\,{z}^{45}+7413678477504\,{z}^{46}+2820421159920\,{z}^{47}\\&\qquad +22845411395352\,{z}^{48}+17970111961776\,{z}^{49}+65594937833568\,{z}^{50}\\&\qquad +53910335885328\,{z}^{51}+228454113953520\,{z}^{52}+85579636338144\,{z}^{53}\\&\qquad +699323426602164\,{z}^{54}+541762613089776\,{z}^{55}+1997341681993632\,{z}^{56}\\&\qquad +1625287839269328\,{z}^{57}+6931950543389664\,{z}^{58}+2565213336678096\,{z}^{59}\\&\qquad +20712629060085924\,{z}^{60}+14568845209835904\,{z}^{61}+58451616870107760\,{z}^{62}\\ \end{aligned}$$
$$\begin{aligned}&\qquad +43706535629507712\,{z}^{63}+198265534609662000\,{z}^{64}+61858846798214544\,{z}^{65}\\&\qquad +566246366845194672\,{z}^{66}+350533465189882416\,{z}^{67}\\&\qquad +1530609927186590640\,{z}^{68}+1051600395569647248\,{z}^{69}\\&\qquad +5020083336316641840\,{z}^{70}+1484612323157149056\,{z}^{71}\\&\qquad +13978909783188828972\,{z}^{72}+8350944317758963440\,{z}^{73}\\&\qquad +36744154998139439136\,{z}^{74}+25052832953276890320\,{z}^{75}\\&\qquad +120253598175729073536\,{z}^{76}+35073966134587646448\,{z}^{77}\\&\qquad +333202678278582641256\,{z}^{78}+195412097035559744496\,{z}^{79}\\&\qquad +871838586774035783136\,{z}^{80}+586236291106679233488\,{z}^{81}\\&\qquad +2840991256901599362288\,{z}^{82}+811711787686171246368\,{z}^{83}\\&\qquad +7812725956479398246292\,{z}^{84}+4464414832273941855024\,{z}^{85}\\&\qquad +20292794692154281159200\,{z}^{86}+13393244496821825565072\,{z}^{87}\\&\qquad +65748654802579870955808\,{z}^{88}+18263515222938853043280\,{z}^{89}\\&\qquad +178982449184800759824144\,{z}^{90}+98622982203869806433712\,{z}^{91}\\&\qquad +460240583618059096690656\,{z}^{92}+295868946611609419301136\,{z}^{93}\\&\qquad +1479344733058047096505680\,{z}^{94}+394491928815479225734848\,{z}^{95}\\ \end{aligned}$$
$$\begin{aligned}&\qquad +3969575033705759708956908\,{z}^{96}+2071082626281265935107952\,{z}^{97}\\&\qquad +10059544184794720256238624\,{z}^{98}+6213247878843797805323856\,{z}^{99}\\&\qquad +31953846234053817284522688\,{z}^{100}+7988461558513454321130672\,{z}^{101}\\&\qquad +83878846364391270371872056\,{z}^{102}+39942307792567271605653360\,{z}^{103}\\&\qquad +207700000521349812349397472\,{z}^{104}+119826923377701814816960080\,{z}^{105}\\&\qquad +647065386239589800011584432\,{z}^{106}+143792308053242177780352096\,{z}^{107}\\&\qquad +1635637504105629772251505092\,{z}^{108}+647065386239589800011584432\,{z}^{109}\\&\qquad +3882392317437538800069506592\,{z}^{110}+1941196158718769400034753296\,{z}^{111}\\&\qquad +11647176952312616400208519776\,{z}^{112}+1941196158718769400034753296\,{z}^{113}\\&\qquad +27176746222062771600486546144\,{z}^{114}+5823588476156308200104259888\,{z}^{115}\\&\qquad +58235884761563082001042598880\,{z}^{116}+17470765428468924600312779664\,{z}^{117}\\&\qquad +157236888856220321402815016976\,{z}^{118}\\&\qquad +314473777712440642805630033952\,{z}^{120}\\&\qquad +471710666568660964208445050928\,{z}^{122}\\&\qquad +943421333137321928416890101856\,{z}^{124}\\&\qquad +1415131999705982892625335152784\,{z}^{126} \end{aligned}$$

Example

\(n=9\cdot 20\): With \(x^{9\cdot 14}-1 = (x-1)^9(x+1)^9r_1^9r_2^9r_3^9,r_4^9\), where \(r_1,r_2,r_3,r_4\) are prime self-reciprocal polynomials of degrees 2, 4, 4 and 8, from Theorem 4 we obtain

$$\begin{aligned} \mathcal {G}_{9\cdot 20}^{(3)}(z)&= \left( 1+2\sum _{j=1}^53^{j-1}z^{2j-1}\right) ^2\left( 1+2\sum _{j=1}^93^{j-1}z^{2j}\right) \\&\times \left( 1+8\sum _{j=1}^93^{2(j-1)}z^{4j}\right) ^2\left( 1+80\sum _{j=1}^93^{4(j-1)}z^{8j}\right) \end{aligned}$$

Expanding, for instance from the coefficient of \(z^{99}\) we see that the number of 81-plateaued functions in \(\mathcal {D}\) for \(p=3\) and \(n=9\cdot 20\) is 616946472137940526877139072. Furthermore we see that the number of bent functions in the set \(\mathcal {D}\) is \(\mathcal {N}_{9\cdot 20}^{(3)} = 6054249652811609019026768290053459869736960\). Here we omit writing down the whole expanded version of the polynomial \(\mathcal {G}_{9\cdot 20}^{(3)}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anbar, N., Meidl, W. & Topuzoğlu, A. Idempotent and p-potent quadratic functions: distribution of nonlinearity and co-dimension. Des. Codes Cryptogr. 82, 265–291 (2017). https://doi.org/10.1007/s10623-016-0213-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-016-0213-8

Keywords

Mathematics Subject Classification

Navigation