Advertisement

Designs, Codes and Cryptography

, Volume 78, Issue 1, pp 269–310 | Cite as

(Secure) Linear network coding multicast

A theoretical minimum and some open problems
  • Christina Fragouli
  • Emina Soljanin
Article

Abstract

We introduce network coding in an elementary way, through a combinatorial/algebraic framework, and discuss connections with classical coding theory. We also present a selection of emerging areas and long-standing open problems.

Keywords

Network coding Multicast Eavesdropping MDS codes  Deterministic networks 

Mathematics Subject Classification

00-02 11T71 68P30 94B05 94B99 

Notes

Acknowledgments

C. Fragouli was supported by the NSF Grant 1321120.

References

  1. 1.
    Ahlswede R., Cai N., Li S.-Y.R., Yeung R.W.: Network information flow. IEEE Trans. Inf. Theory 46, 1204–1216 (2000).Google Scholar
  2. 2.
    Amaudruz A., Fragouli C.: Combinatorial algorithms for wireless information flow. In: SODA (2009).Google Scholar
  3. 3.
    Avestimehr A.S., Diggavi S.N., Tse D.N.C.: Wireless network information flow: a deterministic approach. IEEE Trans. Inf. Theory 57(4), 1872–1905 (2011).Google Scholar
  4. 4.
    Bellovin S.M.: Frank Miller: inventor of the one-time pad. Cryptologia 35(3), 203–222 (2011).Google Scholar
  5. 5.
    Bondy J.A., Murty U.S.R.: Graph theory with applications. North-Holland, Amsterdam (1979).Google Scholar
  6. 6.
    Cai N., Yeung R.W.: Secure network coding. In: Proceedings of 2002 IEEE International Symposium on Information Theory (ISIT’02) (2002).Google Scholar
  7. 7.
    Cheng F., Yeung R.W.: Performance bounds on a wiretap network with arbitrary wiretap sets. IEEE Trans. Inf. Theory 60(6), 3345–3358 (2014).Google Scholar
  8. 8.
    Csiszár I., Narayan P.: Secrecy capacities for multi terminal channel models. IEEE Trans. Inf. Theory 54(6), 2437–2452 (2008).Google Scholar
  9. 9.
    Cui T.: Coding for wireless broadcast and network secrecy. PhD Thesis, California Institute of Technology (2010).Google Scholar
  10. 10.
    Cui T., Ho T., Kliewer J.: Achievable strategies for general secure network coding. In: Proceedings of Information Theory and Applications Workshop (ITA), pp. 1–6 (2010).Google Scholar
  11. 11.
    Cui T., Ho T., Kliewer J.: On secure network coding with unequal link capacities and restricted wiretapping sets. In: Proceedings of IEEE Information Theory Workshop (ITW) (2010).Google Scholar
  12. 12.
    Cui T., Ho T., Kliewer J.: On secure network coding with nonuniform or restricted wiretap sets. IEEE Trans. Inf. Theory 59(1), 166–176 (2013).Google Scholar
  13. 13.
    Czap L., Prabhakaran V.M., Fragouli C., Diggavi S.: Secret message capacity of erasure broadcast channels with feedback. In: Proceedings of Information Theory Workshop (ITW), pp. 65–69 (2011).Google Scholar
  14. 14.
    Czap L., Prabhakaran V.M., Diggavi S., Fragouli C.: Broadcasting private messages securely. In: Proceedings of International Symposium on Information Theory (ISIT), pp. 428–432. IEEE (2012).Google Scholar
  15. 15.
    Czap L., Prabhakaran V.M., Diggavi S., Fragouli C.: Exploiting common randomness: a resource for network secrecy. In: Proceedings of Information Theory Workshop (ITW), pp. 1–5 (2013).Google Scholar
  16. 16.
    Czap L., Prabhakaran V.M., Diggavi S., Fragouli C.: Secure network coding with erasures and feedback. In: Proceedings of Annual Allerton Conference on Communication, Control, and Computing (2013).Google Scholar
  17. 17.
    Czap L., Prabhakaran V.M., Diggavi S., Fragouli C.: Triangle network secrecy. In: Proceedings of International Symposium on Information Theory (ISIT), pp. 781–785 (2014).Google Scholar
  18. 18.
    Czap L., Fragouli C., Prabhakaran V., Diggavi S.: Secure network coding with erasures and feedback. IEEE Trans. Inf. Theory 61(4), 1667–1686 (2015)Google Scholar
  19. 19.
    Dau S.H., Song W., Yuen C.: On the existence of MDS codes over small fields with constrained generator matrices. In: IEEE International Symposium on Information Theory (ISIT), 2014, pp. 1787–1791 (2014).Google Scholar
  20. 20.
    Diggavi S.N., Avestimehr S., Tse D.N.C.: A deterministic approach to wireless relay networks. In: Proceedings of Allerton Conference on Communication, Control, and Computing (2007).Google Scholar
  21. 21.
    Diggavi S.N., Avestimehr S., Tse D.N.C.: Wireless network information flow. In: Proceedings of Allerton Conference on Communication, Control, and Computing (2007).Google Scholar
  22. 22.
    Diggavi S.N., Avestimehr S., Tse D.N.C.: Approximate capacity of gaussian relay networks. In: IEEE International Symposium on Information Theory (ISIT) (2008).Google Scholar
  23. 23.
    Ebrahimi J., Fragouli C.: Multicasting algorithms for deterministic networks. In: Information Theory Workshop (ITW) (2010).Google Scholar
  24. 24.
    Ebrahimi J., Fragouli C.: On the benefits of vector network coding. In: IEEE Allerton Conference on Communications, Control and Computing (2010).Google Scholar
  25. 25.
    Ebrahimi J., Fragouli C.: Vector network coding. In: IEEE International Symposium on Information Theory (ISIT) (2010).Google Scholar
  26. 26.
    Ebrahimi J., Fragouli C.: Algebraic algorithms for vector network coding. IEEE Trans. Inf. Theory, 57(2), pp. 1046–1066 (2011).Google Scholar
  27. 27.
    Ebrahimi J., Fragouli C.: Combinatorial algorithms for wireless information flow. ACM Trans. Algorithms. doi: 10.1137/1.9781611973068.61
  28. 28.
    Ebrahimi J., Fragouli C.: Properties of network polynomials. In: IEEE International Symposium on Information Theory (ISIT), 2014 (2012).Google Scholar
  29. 29.
    El Rouayheb S., Soljanin E.: On wiretap networks II. In: Proceedings of International Symposium on Information Theory (ISIT) (2007).Google Scholar
  30. 30.
    El Rouayheb S., Soljanin E., Sprintson A.: Secure network coding for wiretap networks of type II. IEEE Trans. Inf. Theory 58(3), 1361–1371 (2012).Google Scholar
  31. 31.
    Feldman J., Malkin T., Stein C., Servedio R.A.: On the capacity of secure network coding. In: Proceedings of 42nd Annual Allerton Conference on Communication, Control, and Computing (2004).Google Scholar
  32. 32.
    Fragouli C., Soljanin E.: Information flow decomposition for network coding. IEEE Trans. Inf. Theory 52(3), 829–848 (2006).Google Scholar
  33. 33.
    Gessel I.M., Viennot X.: Determinants, paths and plane partitions (1989) (preprint). http://pfeinsil.math.siu.edu/MATH/MatrixTree/gesseldeterminants_paths_and_plane_partitions.pdf
  34. 34.
    Halbawi W., Ho T., Hongyi Y., Duursma I.: Distributed Reed–Solomon codes for simple multiple access networks. In: Proceedings of IEEE International Symposium on Information Theory (ISIT’14), pp. 651–655 (2014).Google Scholar
  35. 35.
    Huang W., Ho T., Langberg M., Kliewer J.: On secure network coding with uniform wiretap sets. In: Proceedings of IEEE International Symposium on Network Coding (NetCod) (2013).Google Scholar
  36. 36.
    Iwata S., Goemans M., Zenklusen R.: An algorithmic framework for wireless information flow. Allerton, New York (2009).Google Scholar
  37. 37.
    Jafari Siavoshani, M., Diggavi, S., Fragouli, C., Kiran Pulleti, U., Argyraki, K.: Group secret key generation over broadcast erasure channels. In: Proceedings of Asilomar Conference on Signals, Systems, and Computers, pp. 719–723 (2010).Google Scholar
  38. 38.
    Jaggi S., Cassuto Y., Effros M.: Low complexity encoding for network codes. In: International Symposium on Information Theory (ISIT) (2006).Google Scholar
  39. 39.
    Kim M., Medard M.: Algebraic network coding approach to deterministic wireless relay networks. arXiv:1001.4431.
  40. 40.
    Koetter R., Médard M.: An algebraic approach to network coding. IEEE/ACM Trans. Netw. 11(5), 782–795 (2003).Google Scholar
  41. 41.
    Leung-Yan-Cheong S., Hellman M.E.: The Gaussian wire-tap channel. IEEE Trans. Inf. Theory 24(4), 451–456 (1978).Google Scholar
  42. 42.
    Liang Y., Poor H.V., Shamai S.: Information theoretic security. Found. Trends Commun. Inf. Theory 5(4–5), 355–580 (2009).Google Scholar
  43. 43.
    Maurer U.: Secret key agreement by public discussion from common information. IEEE Trans. Inf. Theory 39(3), 733–742 (1993).Google Scholar
  44. 44.
    Maurer U., Wolf S.: Information-theoretic key agreement: from weak to strong secrecy for free. In: Proceedings of International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT), pp. 351–368. Springer, Berlin (2000).Google Scholar
  45. 45.
    Mishra S., Fragouli C., Prabhakaran V., Diggavi S.: Using feedback for secrecy over graphs. http://arxiv.org/pdf/1305.3051.pdf.
  46. 46.
    Ozarow L.H., Wyner A.D.: The wire-tap channel II. Bell Syst. Tech. J. 63, 2135–2157 (1984).Google Scholar
  47. 47.
    Papadopoulos A., Czap L., Fragouli C.: Secret message capacity of a line network. In: Annual Allerton Conference on Communication, Control and Computing (Allerton) (2014).Google Scholar
  48. 48.
    Papadopoulos A., Czap L., Fragouli C.: Lp formulations for secrecy over erasure networks with feedback. In: International Symposium on Information Theory (ISIT) (2015).Google Scholar
  49. 49.
    Shannon C.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715 (1949).Google Scholar
  50. 50.
    Shi C., Ramamoorthy A.: Fast algorithms for finding unicast capacity of linear deterministic wireless relay networks. CoRR, abs/0909.5507 (2009).Google Scholar
  51. 51.
    Silva D., Kschischang F.R.: Security for wiretap networks via rank-metric codes. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), pp. 176–180 (2008).Google Scholar
  52. 52.
    Silver D.S., Kovacs I., Williams S.G.: Determinants of commuting-block matrices. Am. Math. Mon. 106(10), 950–952 (1999).Google Scholar
  53. 53.
    Sun Q., Yang X., Long K., Li Z.: Constructing multicast networks where vector linear coding outperforms scalar linear coding. In: International Symposium on Information Theory (ISIT) (2015).Google Scholar
  54. 54.
    Tabatabaei Yazdi S., Savari S.: A combinatorial study of linear deterministic relay networks. arXiv:0909.5507v1 (2011).
  55. 55.
    Wyner A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975).Google Scholar
  56. 56.
    Yan M., Sprintson A.: Algorithms for weakly secure data exchange. In: Proceedings of 2013 International Symposium on Network Coding (NetCod), pp. 1–6 (2013).Google Scholar
  57. 57.
    Yan M., Sprintson A., Zelenko I.: Weakly secure data exchange with generalized reed solomon codes. In: Proceedings of 2014 IEEE International Symposium on Information Theory (ISIT), pp. 1366–1370 (2014).Google Scholar
  58. 58.
    Yeung R.W., Cai N.: On the optimality of a construction of secure network codes. In: IEEE International Symposium on Information Theory (ISIT), pp. 166–170 (2008).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.UCLALos AngelesUSA
  2. 2.Bell LabsMurray HillUSA

Personalised recommendations