Designs, Codes and Cryptography

, Volume 79, Issue 3, pp 619–623 | Cite as

Transitive hyperovals

  • Benjamin C. Cooper
  • Tim Penttila


We complete the classification of transitive hyperovals with groups of order divisible by \(\textit{four}\).


Finite partial geometries (general) Nets Partial spreads Blocking sets Ovals \(k\)-arcs 

Mathematics Subject Classification

51E14 51E21 


  1. 1.
    Baer R: Projectivities with fixed points on every line of the plane. Bull. Am. Math. Soc. 52, 273–286 (1946).Google Scholar
  2. 2.
    Biliotti M., Korchmaros G.: Hyperovals with a transitive collineation group. Geom. Dedicata 24, 269–281 (1987).Google Scholar
  3. 3.
    Bose R.C.: Mathematical theory of the symmetrical factorial design. Sankhyā 8, 107–166 (1947).Google Scholar
  4. 4.
    Hulpke A.: Constructing transitive permutation groups. J. Symb. Comput. 39, 1–30 (2005).Google Scholar
  5. 5.
    Korchmaros G.: Collineation groups transitive on the points of an oval [\((q+2)\)-arc] of \(S_{2, q}\) for \(q\) even. Atti Sem. Mat. Fis. Univ. Modena 27, 89–105 (1978).Google Scholar
  6. 6.
    Lunelli L., Sce M.: \(q\)-Archi completi dei piani desarguesiani di rango 8 e 16. Centro Calc. Num. Politec. Milano (1958).Google Scholar
  7. 7.
    Sonnino A.: Transitive hyperovals in finite projective planes. Australas. J. Comb. 33, 335–347 (2005).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Colorado State UniversityFort CollinsUSA

Personalised recommendations