Designs, Codes and Cryptography

, Volume 76, Issue 1, pp 101–111 | Cite as

Hamming codes for wet paper steganography

  • Carlos Munuera


We study the application of Hamming codes to wet paper steganography. To that end, we propose the use of decoding algorithms that do not verify the minimum distance property and present one of these algorithms. We study its properties and show results of some numerical experiments.


Linear codes Decoding Steganography Hamming code Wet paper 

Mathematics Subject Classification

94A60 94B60 



This work was supported by Spanish Ministry for Science and Technology under Grant MTM2012-36917-C03-02.


  1. 1.
    Barg A.: Complexity issues in coding theory. In: Pless V., Huffman W., Brualdi R. (eds.) Handbook of Coding Theory, vol. 1. North-Holland, Amsterdam (1998).Google Scholar
  2. 2.
    Berlekamp E., McEliece R.J., van Tilborg H.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory. 24, 384–386 (1978).Google Scholar
  3. 3.
    Cohen G., Honkala I., Litsyn S., Lobstein A.: Covering Codes. North-Holland, Amsterdam (1997).Google Scholar
  4. 4.
    Cohen G., Karpovsky M.G., Mattson H.F., Schatz J.: Covering radius. Survey and recent results. IEEE Trans. Inf. Theory. 31, 328–343 (1985).Google Scholar
  5. 5.
    Cohen G., Munuera C., Solé P.: The average radius of codes: survey and new results. In: Proceedings of ISIT-2011, pp. 1792–1795 (2012).Google Scholar
  6. 6.
    Crandall R.: Some Notes on Steganography (1998). Posted on the steganography mailing list.
  7. 7.
    Fontaine C., Galand F.: How Reed–Solomon codes can improve steganographic schemes. EURASIP J. Inf. Secur. 2009, 1–10 (2009).Google Scholar
  8. 8.
    Fridrich J., Goljan M., Lisonek P., Soukal D.: Writing on wet paper. IEEE Trans. Signal Process. 53, 3923–3935 (2005).Google Scholar
  9. 9.
    Fridrich J., Goljan M., Soukal D.: Wet paper codes with improved embedding efficiency. IEEE Trans. Inf. Secur. Forensic. 1, 102–110 (2006).Google Scholar
  10. 10.
    Munuera C.: Steganography from a coding theory point of view. In: Martinez E. (ed.) Algebraic Geometry Modeling in Information Theory, pp. 83–128. Word Scientific, Hackensack (2013).Google Scholar
  11. 11.
    Munuera C., Barbier M.: Wet paper codes and the dual distance in steganography. Adv. Math. Commun. 6(3), 273–285 (2012).Google Scholar
  12. 12.
    Mac Williams F.J., Sloane N.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).Google Scholar
  13. 13.
    Schönfeld D., Winkler A.: Embedding with syndrome coding based on BCH codes. In: Proceedings of the 8th Workshop on Multimedia and Security, MMSec’06, pp. 214–223, New York (2006).Google Scholar
  14. 14.
    Westfeld A.: F5A Steganographic algorithm. High capacity despite better steganalysis. In: Proceedings of 4th International Workshop on Information Hiding, pp. 289–302. Springer, Heidelberg (2001).Google Scholar
  15. 15.
    Zhang R., Sachnev V., Kim H.: Fast BCH syndrome coding for steganography. In: Katzenbeisser S., Sadeghi, A.-R. (eds.) Information Hiding. LNCS, vol. 5806, pp. 48–58. Springer, Heidelberg (2009).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Applied MathematicsUniversity of ValladolidValladolidSpain

Personalised recommendations