Designs, Codes and Cryptography

, Volume 73, Issue 1, pp 47–54 | Cite as

Construction of codes from Arakelov geometry



We give a construction of the codes from Hermitian vector bundles on an arithmetic curve generalizing the number field codes introduced by Guruswami and Lenstra. Using Arakelov geometry, we give an estimate of the parameters of these codes.


Algebraic geometric codes Number field codes Arakelov geometry 

Mathematics Subject Classification (2010)

94B27 14G40 14H60 



The author was supported in part by Grant-in-Aid for Scientific Research (C)(24540052).


  1. 1.
    Bost J.-B., Chen H.: Concerning the semistability of tensor products in Arakelov geometry. J. Math. Appl. arXiv:1203.0216 (2012).Google Scholar
  2. 2.
    Bost J.-B.: Période et isogénies des variétés abélinennes sur les corps de nombres (d’après D.Masser et G.W\(\ddot{u}\)stholz), Astérisque 237, no. 795, Exp. 795, pp. 115–161 (1996).Google Scholar
  3. 3.
    Chamber-Loir A.: Théorèmes d’algébricité en géométrie diophantinne d’apres J.-B. Bost, Y. André & G. Chudnovsky, Astérisque 282 : no. 282. Exp. 886, pp. 175–209 (2002).Google Scholar
  4. 4.
    Gillet H., Soulé C.: On the number of lattice points in convex symmetric bodies and their duals. Israel J. Math. 74, 347–57 (1991).Google Scholar
  5. 5.
    Gurusuwami V.: Constructions of codes from number fields. IEEE Trans. Inf. Theory 49, 594–603 (2003).Google Scholar
  6. 6.
    Lang S.: Introduction to Arakelov Theory. Springer, New York (1988).Google Scholar
  7. 7.
    Lenstra H.: Codes from algebraic number fields. In: Hazewinkel M., Lenstra J.K., Meertens L.G.L.T. (eds), Mathematics and Computer Science II, Fundamental Contributions in the Netherlands Since 1986, pp. 94–104 (1945).Google Scholar
  8. 8.
    Nakashima T.: AG codes from vector bundles. Des. Codes Cryptogr. 57, 107–115 (2010).Google Scholar
  9. 9.
    Neukirch J.: Algebraische Zahlentheorie. Springer, Berlin (1992).Google Scholar
  10. 10.
    Savin V.: Algebraic-geometric codes from vector bundles and their decoding. arxiv, math/08031096.Google Scholar
  11. 11.
    Soulé C., Abramovich D., Burnol J.-F., Kramer J.: Lectures on Arakelov geometry. Cambridge University Press, Cambridge (1992).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Mathematical and Physical SciencesFaculty of Science, Japan Women’s UniversityMejirodai, Bunkyoku, TokyoJapan

Personalised recommendations