Advertisement

Designs, Codes and Cryptography

, Volume 71, Issue 3, pp 479–492 | Cite as

Mutually orthogonal Latin squares based on general linear groups

  • Anthony B. Evans
Article
  • 329 Downloads

Abstract

Given a finite group G, how many squares are possible in a set of mutually orthogonal Latin squares based on G? This is a question that has been answered for a few classes of groups only, and for no nonsoluble group. For a nonsoluble group G, we know that there exists a pair of orthogonal Latin squares based on G. We can improve on this lower bound when G is one of GL(2, q) or SL(2, q), q a power of 2, q ≠ 2, or is obtained from these groups using quotient group constructions. For nonsoluble groups, that is the extent of our knowledge. We will extend these results by deriving new lower bounds for the number of squares in a set of mutually orthogonal Latin squares based on the group GL(n, q), q a power of 2, q ≠ 2.

Keywords

MOLS General linear group Orthomorphism 

Mathematics Subject Classification (2010)

05B15 20F99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bateman P.T.: A remark on infinite groups. Am. Math. Monthly 57, 623–624 (1950)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Beth T., Jungnickel D., Lenz H.: Design theory, 2nd ed. Cambridge University Press, Cambridge (1999).Google Scholar
  3. 3.
    Colbourn C.J., Dinitz J.H. (eds.): Handbook of Combinatorial Designs, 2nd ed. Chapman and Hall/CRC, Boca Raton (2007).Google Scholar
  4. 4.
    Dalla Volta F., Gavioli N.: Complete mappings in some linear and projective groups. Arch. Math. (Basel) 61(2), 111–118 (1993)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Dénes J., Keedwell A.D.: Latin Squares and Their Applications. Akadémiai Kiadó, Budapest (1974).Google Scholar
  6. 6.
    Dénes J., Keedwell A.D.: Latin squares: new developments in the theory and applications. Annals of Discrete Mathematics, vol. 46. North Holland, New York (1991).Google Scholar
  7. 7.
    Evans A.B.: Mutually orthogonal Latin squares based on linear groups. In: Jungnickel, D. et al. (eds) Coding Theory, Design Theory, Group Theory (Burlington, VT, 1990), pp. 171–175. . Wiley-Interscience, New York (1993).Google Scholar
  8. 8.
    Evans A.B.: Orthomorphism graphs of groups. Lecture Notes in Mathematics, vol. 1535. Springer, Berlin (1992).Google Scholar
  9. 9.
    Evans A.B.: On orthogonal orthomorphisms of cyclic and non-abelian groups, vol. II, J. Combin. Des. 15(3), 195–209 (2007)CrossRefMATHGoogle Scholar
  10. 10.
    Evans A.B.: The admissibility of sporadic simple groups. J. Algebra 321, 105–116 (2009)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Ge G.: On (g, 4;1)–difference matrices. Discret. Math. 301, 164–174 (2005)CrossRefMATHGoogle Scholar
  12. 13.
    Hall M., Paige L.J.: Complete mappings of finite groups. Pacific J. Math. 5, 541–549 (1955)CrossRefMATHMathSciNetGoogle Scholar
  13. 14.
    Jungnickel D.: On difference matrices and regular Latin squares. Abh. Math. Sem. Univ. Hamburg 50, 219–231 (1980)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Jungnickel D.: Einige neue Differenzenmatrizen. Mitt. Math. Sem. Giessen 149, 47–57 (1981)MathSciNetGoogle Scholar
  15. 15.
    Michler G.: Theory of Finite Simple Groups. Cambridge University Press, Cambridge (2006)MATHGoogle Scholar
  16. 16.
    Paige L.J.: Neofields. Duke Math. J. 16, 39–60 (1949)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Quinn K.A.S.: Difference matrices and orthomorphisms over non-abelian groups. Ars Combinatoria 52, 289–295 (1999)MATHMathSciNetGoogle Scholar
  18. 18.
    Wilcox S.: Reduction of the Hall-Paige conjecture to sporadic simple groups. J. Algebra 321, 1407–1428 (2009)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Wright State UniversityDaytonUSA

Personalised recommendations