Designs, Codes and Cryptography

, Volume 65, Issue 1–2, pp 5–14 | Cite as

On sets of vectors of a finite vector space in which every subset of basis size is a basis II



This article contains a proof of the MDS conjecture for k ≤ 2p − 2. That is, that if S is a set of vectors of \({{\mathbb F}_q^k}\) in which every subset of S of size k is a basis, where q = p h , p is prime and q is not and k ≤ 2p − 2, then |S| ≤ q + 1. It also contains a short proof of the same fact for k ≤ p, for all q.


MDS conjecture Linear codes Singleton bound 

Mathematics Subject Classification

51E21 15A03 94B05 05B35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ball S.: On sets of vectors of a finite vector space in which every subset of basis size is a basis. J. Eur. Math. Soc. 14, 733–748 (2012)MATHCrossRefGoogle Scholar
  2. 2.
    Bush K.A.: Orthogonal arrays of index unity. Ann. Math. Stat. 23, 426–434 (1952)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Hirschfeld J.W.P., Korchmáros G.: On the embedding of an arc into a conic in a finite plane. Finite Fields Appl. 2, 274–292 (1996)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory and finite projective spaces: update 2001. In: Developments in Mathematics, vol. 3. Kluwer Academic Publishers. Finite Geometries, Proceedings of the Fourth Isle of Thorns Conference, pp. 201–246.Google Scholar
  5. 5.
    Hirschfeld J.W.P., Thas J.A.: General Galois Geometries. Clarendon Press, Oxford (1991)MATHGoogle Scholar
  6. 6.
    MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).Google Scholar
  7. 7.
    Oxley J.: Matroid Theory. Oxford University Press, New York (1992)MATHGoogle Scholar
  8. 8.
    Segre B.: Ovals in a Finite Projective Plane. Can. J. Math. 7, 414–416 (1955)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Segre B.: Curve razionali normali e k-archi negli spazi finiti. Ann. Mat. Pura Appl. 39, 357–379 (1955)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Segre B.: Introduction to Galois geometries. Atti Accad. Naz. Lincei Mem. 8, 133–236 (1967)MathSciNetMATHGoogle Scholar
  11. 11.
    Voloch J.F.: Complete arcs in Galois planes of non-square order In Advances in Finite Geometries and Designs, pp. 401–406. Oxford University Press, Oxford (1991)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Departament de Matemàtica Aplicada IVUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Department of MathematicsGhent UniversityGhentBelgium

Personalised recommendations