Advertisement

Designs, Codes and Cryptography

, Volume 68, Issue 1–3, pp 141–154 | Cite as

Abelian and non-abelian Paley type group schemes

  • Yu Qing Chen
  • Tao Feng
Article

Abstract

In this paper, we present a construction of abelian Paley type group schemes which are inequivalent to Paley group schemes. We then determine the equivalence amongst their configurations, the Hadamard designs or the Paley type strongly regular graphs obtained from these group schemes, up to isomorphism. We also give constructions of several families of non-abelian Paley type group schemes using strong multiplier groups of the abelian Paley type group schemes, and present the first family of p-groups of non-square order and of non-prime exponent that contain Paley type group schemes for all odd primes p.

Keywords

Paley group scheme Paley type group scheme Paley type partial difference set Skew Hadamard difference set 

Mathematics Subject Classification (2000)

05B10 05C25 05E18 05E30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beth T., Jungnickel D., Lenz H.: Design Theory, vol. 1, 2nd edn. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  2. 2.
    Bierbrauer J.: New semifields, PN and APN functions. Des. Codes Cryptogr. 54, 189–200 (2010)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bruck R.H.: Difference sets in a finite group. Trans. Am. Math. Soc. 78, 464–481 (1955)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Camion P., Mann H.B.: Antisymmetric difference sets. J. Number Theory 4, 266–268 (1972)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Chen Y.Q.: Multiplicative characterization of some difference sets in elementary abelian groups. J. Comb. Inf. Syst. Sci. 34, 95–111 (2009)Google Scholar
  6. 6.
    Chen Y.Q.: Divisible designs and semi-regular relative difference sets from additive Hadamard cocycles. J. Comb. Theory Ser. A 118(, 2185–2206), 118 , 2185–2206 (2011)Google Scholar
  7. 7.
    Chen Y.Q., Polhill J.: Paley type group schemes and planar Dembowski-Ostrom polynomials. Discret. Math. 311, 1349–1364 (2011)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Chen Y.Q., Xiang Q., Sehgal S.K.: An exponent bound on skew Hadamard abelian difference sets. Des. Codes Cryptogr. 4, 313–317 (1994)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Davis J.A.: Partial difference sets in p-groups. Arch. Math. 63, 103–110 (1994)MATHCrossRefGoogle Scholar
  10. 10.
    Ding C., Wang Z., Xiang Q.: Skew Hadamard difference sets from the Ree-Tits slice sympletic spreads in PG(3, 32h+1). J. Comb. Theory Ser. A 114, 867–887 (2007)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Ding C., Yin J.: A family of skewHadamard difference sets. J. Comb. Theory Ser. A 113, 1526–1535 (2006)MATHCrossRefGoogle Scholar
  12. 12.
    Feng T.: Non-abelian skew Hadamard difference sets fixed by a prescribed automorphism. J. Comb. Theory Ser. A 118, 27–36 (2011)MATHCrossRefGoogle Scholar
  13. 13.
    Gao S., Wei W.D.: On nonabelian group difference sets. Discret. Math. 112, 93–102 (1993)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Johnson E.C.: Skew-Hadamardabelian group difference sets. J. Algebra 4, 388–402 (1966)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kantor W.M.: 2-transitive symmetric designs. Trans. Am. Math. Soc. 146, 1–28 (1969)MathSciNetMATHGoogle Scholar
  16. 16.
    Kibler R.E.: A summary of noncyclic difference sets. k < 20. J. Comb. Theory Ser. A 25, 62–67 (1978)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Leung K.H., Ma S.L.: Partial difference sets with Paley parameters. Bull. Lond. Math. Soc. 27, 553–564 (1995)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ma S.L.: A survey of partial difference sets. Des. Codes Cryptogr. 4, 221–261 (1994)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Muzychuk M.: On skew Hadamard difference sets, arXiv:1012.2089v1. http://arxiv.org/pdf/1012.2089.pdf.
  20. 20.
    Paley R.E.A.C.: On orthogonal matrices. J. Math. Phys. 12, 311–320 (1933)Google Scholar
  21. 21.
    Polhill J.: Paleytype partial difference sets in non p-groups. Des. Codes Cryptogr. 52, 163–169 (2009)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Polhill J.: Paley type partial difference sets in groups of order n 4 and 9n 4 for any odd n. J. Comb. Theory Ser. A 117, 1027–1036 (2010)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Turyn R.J.: Character sums and difference sets. Pac. J. Maths. 15, 319–346 (1965)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Weng G., Hu L.: Some results on skew Hadamard difference sets. Des. Codes Cryptogr. 50, 93–105 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Weng G., Qiu W., Wang Z., Xiang Q.: Pseudo-Paley graphs and skew Hadamard difference sets from presemifields. Des. Codes Cryptogr. 44, 49–62 (2007)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Xiang Q.: Note on Paley Type Partial Difference Sets, in Groups, Difference Sets, and the Monster (Columbus, OH, 1993), pp. 239–244, Ohio State University Mathematical Research Institute Publications, 4, de Gruyter, Berlin (1996).Google Scholar
  27. 27.
    Zha Z., Kyureghyan G.M., Wang X.: Perfect nonlinear binomials and their semifields. Finite Fields Appl. 15, 125–133 (2009)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsWright State UniversityDaytonUSA
  2. 2.Department of MathematicsZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations