Advertisement

Designs, Codes and Cryptography

, Volume 67, Issue 3, pp 395–402 | Cite as

Predicting masked linear pseudorandom number generators over finite fields

  • Jaime Gutierrez
  • Álvar Ibeas
  • Domingo Gómez-Pérez
  • Igor E. Shparlinski
Article

Abstract

We study the security of the linear generator over a finite field. It is shown that the seed of a linear generator can be deduced from partial information of a short sequence of consecutive outputs of such generators.

Keywords

Pseudorandom numbers Finite fields Cryptography 

Mathematics Subject Classification (2000)

11B50 11B83 94A55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blackburn S.R., Gómez-Perez D., Gutierrez J., Shparlinski I.E.: Predicting the inversive generator. Lecture Notes in Computer Science, vol. 2898, pp. 264–275. Springer, Berlin (2003).Google Scholar
  2. 2.
    Blackburn S.R., Gómez-Perez D., Gutierrez J., Shparlinski I.E.: Predicting nonlinear pseudorandom number generators. Math. Comput. 74, 1471–1494 (2005)MATHGoogle Scholar
  3. 3.
    Blum L., Blum M., Shub M.: A simple unpredictable pseudo-random number generator. SIAM J. Comput. 15, 364–383 (1986)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Boyar J.: Inferring sequences produced by pseudo-random number generators. J. ACM 36, 129–141 (1989a)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Boyar J.: Inferring sequences produces by a linear congruential generator missing low-order bits. J. Cryptol. 1, 177–184 (1989b)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Contini S., Shparlinski I.E.: On Stern’s attack against secret truncated linear congruential generators. Lecture Notes in Computer Science, vol. 3574, pp. 52–60. Springer, Berlin (2005).Google Scholar
  7. 7.
    Frieze A.M., Håstad J., Kannan R., Lagarias J.C., Shamir A.: Reconstructing truncated integer variables satisfying linear congruences. SIAM J. Comput. 17, 262–280 (1988)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Gómez-Perez D., Gutierrez J., Ibeas Á.: Attacking the Pollard generator. IEEE Trans. Inf. Theory 52, 5518–5523 (2006)CrossRefGoogle Scholar
  9. 9.
    Griffin F., Niederreiter H., Shparlinski I.E.: On the distribution of nonlinear recursive congruential pseudorandom numbers of higher orders. Lecture Notes in Computer Science, vol. 1719, pp. 87–93. Springer, Berlin (1999).Google Scholar
  10. 10.
    Gutierrez J., Gómez-Perez D.: Iterations of multivariate polynomials and discrepancy of pseudorandom numbers. Lecture Notes in Computer Science, vol. 2227, pp. 192–199. Springer, Berlin (2001).Google Scholar
  11. 11.
    Gutierrez J., Ibeas Á.: Inferring sequences produced by a linear congruential generator on elliptic curves missing high-order bits. Des. Codes Cryptogr. 41, 199–212 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Herrmann M., May A.: Attacking power generators using unravelled linearization: When do we output too much? Lecture Notes in Computer Science, vol. 5912, pp. 487–504. Springer, Berlin (2009).Google Scholar
  13. 13.
    Joux A., Stern J.: Lattice reduction: a toolbox for the cryptanalyst. J. Cryptol. 11, 161–185 (1998)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Knuth D.E.: Deciphering a linear congruential encryption. IEEE Trans. Inf. Theory. 31, 49–52 (1985)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Krawczyk H.: How to predict congruential generators. J. Algorithms 13, 527–545 (1992)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (1997)Google Scholar
  17. 17.
    Ostafe A.: Multivariate permutation polynomial systems and pseudorandom number generators. Finite Fields Appl. 16, 144–154 (2010a)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Ostafe A.: Pseudorandom vector sequences derived from triangular polynomial systems with constant multipliers. Lecture Notes in Computer Science, vol. 6087, pp. 62–72. Springer, Berlin (2010b).Google Scholar
  19. 19.
    Ostafe A., Shparlinski I.E.: On the degree growth in some polynomial dynamical systems and nonlinear pseudorandom number generators. Math. Comput. 79, 501–511 (2010a)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Ostafe A., Shparlinski I.E.: Pseudorandom numbers and hash functions from iterations of multivariate polynomials. Cryptogr. Commun. 2, 49–67 (2010b)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Ostafe A., Pelican E., Shparlinski I.E.: On pseudorandom numbers from multivariate polynomial systems. Finite Fields Appl. 16, 320–328 (2010)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Steinfeld R., Pieprzyk J., Wang H.: On the provable security of an efficient RSA-based pseudorandom generator. Lecture Notes in Computer Science, vol. 4284, pp. 194–209. Springer, Berlin (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jaime Gutierrez
    • 1
  • Álvar Ibeas
    • 1
  • Domingo Gómez-Pérez
    • 1
  • Igor E. Shparlinski
    • 2
  1. 1.Department of Applied Mathematics and Computer ScienceUniversity of CantabriaSantanderSpain
  2. 2.Department of ComputingMacquarie UniversitySydneyAustralia

Personalised recommendations