Designs, Codes and Cryptography

, Volume 67, Issue 2, pp 233–243 | Cite as

Further results on the existence of nested orthogonal arrays

  • Kun Wang
  • Jianxing Yin


Nested orthogonal arrays provide an option for designing an experimental setup consisting of two experiments, the expensive one of higher accuracy being nested in a larger and relatively less expensive one of lower accuracy. We denote by OA(λ, μ)(t, k, (v, w)) (or OA(t, k, (v, w)) if λ = μ = 1) a (symmetric) orthogonal array OA λ (t, k, v) with a nested OA μ (t, k, w) (as a subarray). It is proved in this article that an OA(t, t + 1,(v, w)) exists if and only if v ≥ 2w for any positive integers v, w and any strength t ≥ 2. Some constructions of OA(λ, μ)(t, k, (v, w))′s with λ ≠ μ and kt > 1 are also presented.


Orthogonal arrays t-Quasigroups Nested orthogonal arrays Existence 

Mathematics Subject Classification (2000)

05B15 62K15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aloke D.: Construction of nested orthogonal arrays. Discret. Math. 310, 2831–2834 (2010)MATHCrossRefGoogle Scholar
  2. 2.
    Beth T., Jungnickel D., Lenz H.: Design theory. Cambridge University Press, New York (1999)CrossRefGoogle Scholar
  3. 3.
    Bush K.A.: A generalization of the theorem due to MacNeish. Ann. Math. Stat. 23, 293–295 (1952)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bush K.A.: Orthogonal arrays of index unity. Ann. Math. Stat. 23, 426–434 (1952)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Colbourn C.J., Dinitz J.H.: The CRC handbook of combinatorial designs. CRC Press, Boca Raton (2007)MATHGoogle Scholar
  6. 6.
    Evans A.B.: On orthogonal orthomorphisms of cyclic and non-Abelian groups. Discret. Math. 243, 229–233 (2002)MATHCrossRefGoogle Scholar
  7. 7.
    Evans A.B.: On orthogonal orthomorphisms of cyclic and non-abelian groups. II. J. Combin. Des. 15, 195–209 (2007)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Ge G.: On (g, 4; 1)-difference matrices. Discret. Math. 301, 164–174 (2005)MATHCrossRefGoogle Scholar
  9. 9.
    Hedayat A.S., Slone N.J.A., Stufken J.: Orthogonal arrays. Springer, New York (1999)MATHCrossRefGoogle Scholar
  10. 10.
    Ji L., Yin J.: Constructions of new orthogonal arrays and covering arrays of strength three. J. Combin. Theory A 117, 236–247 (2010)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Jungnickel D.: On difference matrices, resolvable transversal designs and generalized Hadamard matrices. Math. Zeitschr. 167, 49–60 (1979)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Kennedy M.C., O’Hagan A.: Predicting the output from a complex computer code when fast approximations are available. Biometrika 87, 1–13 (2000)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Maurin F.: On incomplete orthogonal arrays. J. Combin. Theory A 40, 183–185 (1985)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Mukerjee R., Qian Z., Wu C.F.J.: On the existence of nested orthogonal arrays. Discret. Math. 308, 4635–4642 (2008)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Qian Z., Seepersad C., Joseph R., Allen J., Wu C.F.J.: Building surrogate models with detailed and approximate simulations. ASME J. Mech. Des. 128, 668–677 (2006)CrossRefGoogle Scholar
  16. 16.
    Qian Z., Wu C.F.J.: Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments. Technometrics 50, 192–204 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Reese C.S., Wilson A.G., Hamada M., Martz H.F., Ryan K.J.: Integrated analysis of computer and physical experiments. Technometrics 46, 153–164 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Teirlinck L.: Generalized idempotent orthogonal arrays. In: Ray-Chaudhuri, D. (ed.) Coding theory and design theory part II,, pp. 368–378. Springer, New York (1990)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MathematicsSoochow UniversitySuzhouChina

Personalised recommendations