Advertisement

Designs, Codes and Cryptography

, Volume 65, Issue 3, pp 213–222 | Cite as

Coding with injections

  • Peter J. Dukes
Article

Abstract

A permutation code of length n and minimum distance d is a set Γ of permutations from some fixed set of n symbols such that the Hamming distance between any distinct \({u,v \in \Gamma}\) is at least d. As a generalization, we introduce the problem of packing injections from an m-set, m ≤ n, sometimes called m-arrangements, relative to Hamming distance. We offer some preliminary coding-theoretic bounds, a few design-theoretic connections, and a short discussion on possible applications.

Keywords

Permutation code Injection Arrangement Ordered design Hamming distance 

Mathematics Subject Classification (2000)

Primary 05A05 94A10 Secondary 05B40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chowla S.A., Erdős P., Straus E.G.: On the maximal number of pairwise orthogonal latin squares of a given order. Canad. J. Math. 13, 204–208 (1960)CrossRefGoogle Scholar
  2. 2.
    Chu W., Colbourn C.J., Dukes P.J.: codes for powerline communication. Des. Codes Cryptogr. 32, 51–64 (2004)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Chu W., Colbourn C.J., Dukes P.J.: Tables for constant composition codes. J. Combin. Math. Combin. Comput. 54, 57–65 (2005)MathSciNetMATHGoogle Scholar
  4. 4.
    Colbourn, C.J., Dinitz, J.H. (eds): The CRC Handbook of Combinatorial Designs, 2nd edn. CRC Press, Boca Raton (2006)Google Scholar
  5. 5.
    Colbourn C.J., Kløve T., Ling A.C.H.: arrays for powerline communication and mutually orthogonal Latin squares. IEEE Trans. Inform. Theory 50, 1289–1291 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Deza M., Vanstone S.A.: Bounds for permutation arrays. J. Stat. Plan. Infer. 2, 197–209 (1978)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Ferreira H.C., Vinck A.J.H.: Interference Cancellation with Permutation Trellis Codes. Vehicular Technology Conference, 2000. IEEE VTS-Fall VTC 2000. 52nd, vol. 5, pp. 2401–2407 (2000).Google Scholar
  8. 8.
    Frankl P., Deza M.: On the maximum number of permutations with given maximal or minimal distance. J. Combin. Theory Ser. A 22, 352–360 (1977)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Janiszczak I., Staszewski R.: An improved bound for permutation arrays of length 10, preprint.Google Scholar
  10. 10.
    Keevash P., Ku C.Y.: A random construction for permutation codes and the covering radius. Des. Codes Cryptogr. 41, 79–86 (2006)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Kløve T.: Classification of permutation codes of length 6 and minimum distance 5. Proc. Int. Symp. Information Theory Appl., pp. 465–468 (2000).Google Scholar
  12. 12.
    Soicher L.H.: The GRAPE package for GAP, Version 4.3, (2006). http://www.maths.qmul.ac.uk/~leonard/grape/.
  13. 13.
    Tarnanen H.: bounds on permutation codes via linear programming. Eur. J. Combin. 20, 101–114 (1999)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Teirlinck L.: Large sets of disjoint designs and related structures. In: Contemporary Design Theory, pp. 561–592. Wiley-Intersci. Ser. Discrete Math. Optim., Wiley, New York (1992).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Mathematics and StatisticsUniversity of VictoriaVictoriaCanada

Personalised recommendations