Skip to main content
Log in

Wei-type duality theorems for matroids

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We present several fundamental duality theorems for matroids and more general combinatorial structures. As a special case, these results show that the maximal cardinalities of fixed-ranked sets of a matroid determine the corresponding maximal cardinalities of the dual matroid. Our main results are applied to perfect matroid designs, graphs, transversals, and linear codes over division rings, in each case yielding a duality theorem for the respective class of objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashikhimin A.: On generalized Hamming weights for Galois ring linear codes. Des. Codes Cryptogr. 14, 107–126 (1998)

    Article  MathSciNet  Google Scholar 

  2. Barg A., Purkayastha P.: Near MDS poset codes and distributions. In: Bruen, A., Wehlau, D. (eds) Error-Correcting Codes, Finite Geometries, and Cryptography, pp. 135–148. American Mathematical Society, Providence, RI (2010)

    Chapter  Google Scholar 

  3. Britz T.: Higher support matroids. Discret. Math. 307, 2300–2308 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brualdi R.A., Graves J.S., Lawrence K.M.: Codes with a poset metric. Discret. Math. 147, 57–72 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. De Oliveira Moura A., Firer M.: Duality for poset codes. IEEE Trans. Inform. Theory 56, 3180–3186 (2010)

    Article  MathSciNet  Google Scholar 

  6. Deza M.: Perfect matroid designs. In: White, N. (ed.) Matroid Applications, pp. 54–72. Cambridge University Press, Cambridge (1992)

    Chapter  Google Scholar 

  7. Horimoto H., Shiromoto K.: On Generalized Hamming Weights for Codes Over Finite Chain Rings. Lecture Notes in Computer Science, vol. 2227, pp. 141–150. Springer, Heidelberg (2001).

  8. Larsen, A. H.: Matroider og Lineære Koder, Master’s thesis, University of Bergen, Norway (2005).

  9. Niederreiter H.: Point sets and sequences with small discrepancy. Monatsh. Math. 104, 273–337 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Niederreiter H.: A combinatorial problem for vector spaces over finite fields. Discret. Math. 96, 221–228 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Niederreiter H.: Orthogonal arrays and other combinatorial aspects in the theory of uniform point distributions in unit cubes. Discret. Math. 106/107, 361–367 (1992)

    Article  MathSciNet  Google Scholar 

  12. Oxley J.G.: Matroid Theory, 3rd edn. Oxford University Press, Oxford, UK (2006)

    MATH  Google Scholar 

  13. Rozenblyum M.Yu, Tsfasman M.A.: Codes for the m-metric. Probl. Inform. Transm. 33, 45–52 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Wei V.K.: Generalized hamming weights for linear codes. IEEE Trans. Inform. Theory 37, 1412–1418 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Welsh D.J.A.: Matroid Theory. Academic Press, London, UK (1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Britz.

Additional information

Communicated by W. H. Haemers.

Thomas Britz was supported by an ARC Discovery Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Britz, T., Johnsen, T., Mayhew, D. et al. Wei-type duality theorems for matroids. Des. Codes Cryptogr. 62, 331–341 (2012). https://doi.org/10.1007/s10623-011-9524-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-011-9524-y

Keywords

Mathematics Subject Classification (2000)

Navigation