Advertisement

Designs, Codes and Cryptography

, Volume 60, Issue 1, pp 37–62 | Cite as

A pair of disjoint 3-GDDs of type g t u 1

  • Yanxun Chang
  • Yeow Meng Chee
  • Junling Zhou
Article

Abstract

Pairwise disjoint 3-GDDs can be used to construct some optimal constant-weight codes. We study the existence of a pair of disjoint 3-GDDs of type g t u 1 and establish that its necessary conditions are also sufficient.

Keywords

Group divisible design Disjoint Resolvable Modified group divisible design Idempotent Latin square Constant-weight code Constant-composition code 

Mathematics Subject Classification (2000)

05B05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abel R.J.R., Bennett F.E., Greig M.: PBD-Closure. In: Colbourn C.J., Dinitz J.H. (eds) CRC Handbook of Combinatorial designs, 2nd edn, pp. 247–255. CRC Press, Boca Raton (2006).Google Scholar
  2. 2.
    Abel R.J.R., Colbourn C.J., Dinitz J.H.: Mutually orthogonal Latin squares. In: Colbourn C.J., Dinitz J.H. (eds) CRC Handbook of Combinatorial Designs, 2nd edn, pp. 160–193. CRC Press, Boca Raton (2006).Google Scholar
  3. 3.
    Assaf A.: Modified group divisible designs. Ars Combin. 29, 13–20 (1990)MathSciNetMATHGoogle Scholar
  4. 4.
    Assaf A., Hartman A.: Resolvable group divisible designs with block size 3. Discrete Math. 77, 5–20 (1989)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Butler R.A.R., Hoffman D.G.: Intersections of group divisible triple systems. Ars Combin. 34, 268–288 (1992)MathSciNetMATHGoogle Scholar
  6. 6.
    Chee Y.M., Ling S.: Constructions for q-ary constant-weight codes. IEEE Trans. Inform. Theory 53(1), 135–146 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chee Y.M., Ge G., Ling A.C.H.: Group divisible codes and their application in the construction of optimal constant-composition codes of weight three. IEEE Trans. Inform. Theory 54(8), 3552–3564 (2008)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Chu W.: Homogeneous embedding of disjoint Steiner triple systems. J. Shanghai Jiaotong Univ. (Chin. Ed.) 27(3), 57–68 (1993)Google Scholar
  9. 9.
    Colbourn C.J., Hoffman D.G., Rees R.: A new class of group divisible designs with block size three. J. Combin. Theory Ser. A 59, 73–89 (1992)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Fu H.L.: On the construction of certain types of latin squares having prescribed intersections. Ph. D. thesis, Auburn University (1980).Google Scholar
  11. 11.
    Lindner C.C., Rosa A.: Steiner triple systems having a prescribed number of triples in common. Canad. J. Math. 27, 1166–1175 (1975)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Ray-Chaudhuri D.K., Wilson R.M.: Solution of Kirkman’s school-girl problem. In: Proceeding of symposia in pure Mathematics, vol. 11, pp. 187–203. American Mathematics Society, Providence, RI (1971).Google Scholar
  13. 13.
    Rees R.: Uniformly resolvable pairwise balanced designs with blocksizs two and three. J. Combin. Theory Ser. A 45, 207–225 (1987)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Rees R., Stinson D.R.: On resolvable group-divisible designs with block size 3. Ars Combin. 23, 107–120 (1987)MathSciNetMATHGoogle Scholar
  15. 15.
    Rosa A., Hoffman D.: The number of repeated blocks in twofold triple systems. J. Combin. Theory Ser. A 41, 61–88 (1986)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Stern G., Lenz H.: Steiner triple systems with given subsystems: another proof of the Doyen-Wilson theorem. Boll. Un. Math. Ital. A 5, 109–114 (1980)MathSciNetGoogle Scholar
  17. 17.
    Stong R.A.: On 1-factorizability of Cayley graphs. J. Combin. Theory Ser. B 39, 298–307 (1985)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Wilson R.M.: Constructions and uses of pairwise balanced designs. Math. Centre Tracts 55, 18–41 (1974)Google Scholar
  19. 19.
    Zhang H., Ge G.: Optimal constant-weight codes of weight four and distance six. IEEE Trans. Inform. Theory 56(5), 2188–2203 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zhang H., Ge G.: Completely reducible super-simple designs with block size four and related super-simple packings. Des. Codes and Cryptogr (2010). doi: 10.1007/s10623-010-9411-y.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of MathematicsBeijing Jiaotong UniversityBeijingPeople’s Republic of China
  2. 2.Division of Mathematical SciencesNanyang Technological UniversitySingaporeSingapore

Personalised recommendations