Designs, Codes and Cryptography

, Volume 55, Issue 2–3, pp 243–260 | Cite as

Minimal logarithmic signatures for finite groups of Lie type

  • Nidhi Singhi
  • Nikhil Singhi
  • Spyros Magliveras


A logarithmic signature (LS) for a finite group G is an ordered tuple α =  [A 1, A 2, . . . , A n ] of subsets A i of G, such that every element \({g \in G}\) can be expressed uniquely as a product ga 1 a 2 . . . a n , where \({a_i \in A_i}\). The length of an LS α is defined to be \({l(\alpha)= \sum^{n}_{i=1}|A_i|}\). It can be easily seen that for a group G of order \({\prod^k_{j=1}{p_j}^{m_j}}\), the length of any LS α for G, satisfies, \({l(\alpha) \geq \sum^k_{j=1}m_jp_j}\). An LS for which this lower bound is achieved is called a minimal logarithmic signature (MLS) (González Vasco et al., Tatra Mt. Math. Publ. 25:2337, 2002). The MLS conjecture states that every finite simple group has an MLS. This paper addresses the MLS conjecture for classical groups of Lie type and is shown to be true for the families PSL n (q) and PSp 2n (q). Our methods use Singer subgroups and the Levi decomposition of parabolic subgroups for these groups.


Logarithmic signatures Finite groups of Lie type Simple groups Singer groups 

Mathematics Subject Classification (2000)

94A60 11T71 14G50 20G40 05E20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artin M.: Algebra. Prentice Hall Inc, Englewood Cliffs, NJ (1991)Google Scholar
  2. 2.
    Bereczky Á.: Maximal overgroups of singer elements in classical groups. J. Algebra 234, 187–206 (2000)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Biggs N., White A.T.: Permutation groups and combinatorial structures. Cambridge University Press, Cambridge-New York (1979)MATHCrossRefGoogle Scholar
  4. 4.
    Bohli J.M., Steinwandt R., González Vasco M.I., Martínez C.: Weak Keys in MST 1. Des. Codes Cryptogr. 37, 509–524 (2005)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Carter R.W.: Finite Groups of Lie Type: Conjugacy Classes and Complex Characters. John Wiley & Sons Ltd, New York (1985)MATHGoogle Scholar
  6. 6.
    Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A.: Atlas of Finite Groups. Clarendon Press, Oxford (1985)MATHGoogle Scholar
  7. 7.
    Cossidente A., De Resmini M.J.: Remarks on singer cyclic groups and their normalizers. Des. Codes Cryptogr. 32, 97–102 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Garrett P.: Buildings and classical groups. Chapman & Hall, London (1997)MATHGoogle Scholar
  9. 9.
    González Vasco M.I., Steinwandt R.: Obstacles in two public key cryptosystems based on group factorizations. Tatra Mt. Math. Publ. 25, 23–37 (2002)MATHMathSciNetGoogle Scholar
  10. 10.
    González Vasco M.I., Rötteler M., Steinwandt R.: On minimal length factorizations of finite groups. Exp. Math. 12, 1–12 (2003)MATHGoogle Scholar
  11. 11.
    Gorenstein D.: Finite Groups. Chelsea Publ. Co., New York (1980)MATHGoogle Scholar
  12. 12.
    Hajós G.: Többméretű terek befedése kockaráccsal. Mat. Fiz. Lapok. 45, 171–190 (1938)MATHGoogle Scholar
  13. 13.
    Hestenes M.D.: Singer groups. Canad. J. Math. 22, 492–513 (1970)MATHMathSciNetGoogle Scholar
  14. 14.
    Hirschfeld J.: Projective geometries over finite fields. The Clarendon Press Oxford University Press, New York (1998)MATHGoogle Scholar
  15. 15.
    Holmes P.E.: On minimal factorisations of sporadic groups. Exp. Math. 13, 435–440 (2004)MATHGoogle Scholar
  16. 16.
    Lempken W., van Trung T.: On minimal logarithmic signatures of finite groups. Exp. Math. 14, 257–269 (2005)MATHGoogle Scholar
  17. 17.
    Lempken W., Magliveras S.S., van Trung T., Wei W.: A public key cryptosystem based on non-abelian finite groups. J. Cryptol. 22, 62–74 (2009)MATHCrossRefGoogle Scholar
  18. 18.
    Magliveras S.S.: A Cryptosystem from logarithmic signatures of finite groups. In Proceedings of the 29th Midwest Symposium on Circuits and Systems, pp. 972–975. Elsevier Publishing Company, Amsterdam (1986).Google Scholar
  19. 19.
    Magliveras S.S.: Secret and public-key cryptosystems from group factorizations. Tatra Mt. Math. Publ. 25, 11–22 (2002)MATHMathSciNetGoogle Scholar
  20. 20.
    Magliveras S.S., Memon N.D: Algebraic properties of cryptosystem PGM. J. Cryptol. 5, 167–183 (1992)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Magliveras S.S., Stinson D.R., van Trung T.: New approaches to designing public key cryptosystems using one-way functions and trapdoors in finite groups. J. Cryptol. 15, 285–297 (2002)MATHCrossRefGoogle Scholar
  22. 22.
    Magliveras S.S., Svaba P., van Trung T., Zajac P.: On the security of a realization of cryptosystem MST 3. Tatra Mt. Math. Publ. 41, 1–13 (2008)MathSciNetGoogle Scholar
  23. 23.
    Minkowski H.: Geometrie der Zahlen. Teubner, Leipzig (1896)Google Scholar
  24. 24.
    Minkowski H.: Diophantische Approximationem. Teubner, Leipzig (1907)Google Scholar
  25. 25.
    Singer J.: A theorem in finite projective geometry and some applications to number theory. Trans. Am. Math. Soc. 43, 377–385 (1938)MATHCrossRefGoogle Scholar
  26. 26.
    Singhi N., Singhi N.: Minimal logarithmic signatures for classical groups (preprint).Google Scholar
  27. 27.
    Szabó S.: Topics in Factorization of Abelian Groups. Birkhäuser Verlag, Basel (2004)Google Scholar
  28. 28.
    Wilson R.A.: The finite simple groups (in preparation).

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nidhi Singhi
    • 1
  • Nikhil Singhi
    • 1
  • Spyros Magliveras
    • 1
  1. 1.Department of Mathematical SciencesCenter for Cryptology and Information SecurityBoca RatonUSA

Personalised recommendations