Advertisement

Designs, Codes and Cryptography

, Volume 57, Issue 2, pp 195–213 | Cite as

Minimum distance of Hermitian two-point codes

  • Seungkook Park
Article

Abstract

We prove a formula for the minimum distance of two-point codes on a Hermitian curve.

Keywords

Hermitian two-point code Minimum distance Shift bound 

Mathematics Subject Classification (2000)

94B40 11T71 14G50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beelen P. (2007) The order bound for general algebraic geometric codes. Finite Fields Appl. 13(3): 665–680MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Carvalho C., Munuera C., Silva E., Torres F. (2007) Near orders and codes. IEEE Trans. Inform. Theory 53(5): 1919–1924CrossRefMathSciNetGoogle Scholar
  3. 3.
    Duursma I.M. (1993) Majority coset decoding. IEEE Trans. Inform. Theory 39(3): 1067–1070MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Feng G.L., Rao T.R.N. (1993) Decoding algebraic-geometric codes up to the designed minimum distance. IEEE Trans. Inform. Theory 39(1): 37–45MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Hirschfeld J.W.P. (1998) Projective geometries over finite fields. second edn. The Clarendon Press Oxford University Press, Oxford mathematical monographsGoogle Scholar
  6. 6.
    Homma M., Kim S.J. (2005) Toward the determination of the minimum distance of two-point codes on a Hermitian curve. Des. Codes Cryptogr. 37(1): 111–132MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Homma M., Kim S.J. (2006) The complete determination of the minimum distance of two-point codes on a Hermitian curve. Des. Codes Cryptogr. 40(1): 5–24MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Homma M., Kim S.J. (2006) The two-point codes on a Hermitian curve with the designed minimum distance. Des. Codes Cryptogr. 38(1): 55–81MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Homma M., Kim S.J. (2006) The two-point codes with the designed distance on a Hermitian curve in even characteristic. Des. Codes Cryptogr. 39(3): 375–386MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kirfel C., Pellikaan R.: The minimum distance of codes in an array coming from telescopic semigroups. IEEE Trans. Inform. Theory. 41(6, part 1):1720–1732, (1995). (Special issue on algebraic geometry codes).Google Scholar
  11. 11.
    Pellikaan R.: The shift bound for cyclic, Reed–Muller and geometric Goppa codes. In: Arithmetic, geometry and coding theory (Luminy, 1993), pp. 155–174. de Gruyter, Berlin (1996).Google Scholar
  12. 12.
    van Lint J.H., Wilson R.M. (1986) On the minimum distance of cyclic codes. IEEE Trans. Inform. Theory. 32(1): 23–40MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Yang K., Kumar P.V.: On the true minimum distance of Hermitian codes. In: Coding theory and algebraic geometry (Luminy, 1991). Lecture Notes in Math., vol. 1518, pp. 99–107. Springer, Berlin (1992).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Computational SciencesKorea Institute for Advanced StudySeoulKorea

Personalised recommendations