Designs, Codes and Cryptography

, Volume 57, Issue 2, pp 139–160 | Cite as

Anonymity in shared symmetric key primitives

  • Gregory M. Zaverucha
  • Douglas R. Stinson


We provide a stronger definition of anonymity in the context of shared symmetric key primitives, and show that existing schemes do not provide this level of anonymity. A new scheme is presented to share symmetric key operations amongst a set of participants according to a (t, n)-threshold access structure. We quantify the amount of information the output of the shared operation provides about the group of participants which collaborated to produce it.


Anonymity Secret-key cryptography Threshold cryptography Perfect hash families 

Mathematics Subject Classification (2000)

94A60 94A62 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An J.H., Dodis Y., Rabin T.: On the security of joint signature and encryption. In: Proceedings of EUROCRYPT’02, LNCS 2332, pp. 83–107 (2002).Google Scholar
  2. Bassalygo L.A., Burmester M., Dyachkov A., Kabatianski G.: Hash codes. In: Proceedings of the 1997 IEEE International Symposium on Information Theory, pp. 174 (1997).Google Scholar
  3. Blackburn S.R., Wild P.R.: Optimal linear perfect hash families. J. Combinat. Theory Ser. A 83, 233–250 (1998)MATHCrossRefMathSciNetGoogle Scholar
  4. Brickell E.F., Di Crescenzo G., Frankel Y.: Sharing block ciphers. In: Information Security and Privacy, LNCS 1841, pp. 457–470 (2000).Google Scholar
  5. Even S., Goldreich O.: On the power of cascade ciphers. ACM Trans. Comput. Syst. 3, 108–116 (1985)CrossRefGoogle Scholar
  6. Katz J., Lindell A.Y.: Aggregate message authentication codes. In: Proceedings of CT-RSA ’08, LNCS 4964, pp. 155–169 (2008).Google Scholar
  7. Liu L., Shen H.: Explicit constructions of separating hash families from algebraic curves over finite fields. Desig. Codes Cryptogr. 41, 221–233 (2006)MATHCrossRefMathSciNetGoogle Scholar
  8. Long S., Pieprzyk J., Wang H., Wong D.S.: Generalised cumulative arrays in secret sharing. Desig. Codes Cryptogr. 40, 191–209 (2006)CrossRefMathSciNetGoogle Scholar
  9. Martin K.M., Ng S.-L.: The combinatorics of generalised cumulative arrays. J. Math. Cryptol. 1, 13–32 (2007)MATHCrossRefMathSciNetGoogle Scholar
  10. Martin K.M., Pieprzyk J., Safavi-Naini R., Wang H., Wild P.R.: Threshold MACs. In: Proceedings of ICISC 2002, LNCS 2587, pp. 237–252 (2003).Google Scholar
  11. Martin K.M., Safavi-Naini R., Wang H., Wild P.R.: Distributing the encryption and decryption of a block cipher. Desig. Codes Cryptogr. 36, 263–287 (2005)MATHCrossRefMathSciNetGoogle Scholar
  12. Melhorn K.: Data Structures and Algorithms, vol 1. Springer-Verlag, Berlin (1984)Google Scholar
  13. Walker R.A., II: Accessed April (2008).
  14. Stinson D.R., Wei R., Zhu L.: New constructions for perfect hash families and related structures using combinatorial designs and codes. J. Combinat. Desig. 8, 189–200 (2000)MATHCrossRefMathSciNetGoogle Scholar
  15. Stinson D.R.: Some baby-step giant-step algorithms for the low hamming weight discrete logarithm problem. Math. Comput. 71, 379–391 (2002)MATHMathSciNetGoogle Scholar
  16. Stinson D.R., Wei R.: Generalized cover-free families. Discrete Math. 279, 463–477 (2004)MATHCrossRefMathSciNetGoogle Scholar
  17. Wang H., Xing C.: Explicit constructions of perfect hash families from algebraic curves over finite fields. J. Combinat. Theory Ser. A 93, 112–124 (2001)MATHCrossRefMathSciNetGoogle Scholar
  18. Wang H., Pieprzyk J.: Shared generation of pseudo-random function with cumulative maps. In: Proceedings of CT-RSA ’03, LNCS 2612, pp. 281–294 (2003).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.David R. Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations