Advertisement

Designs, Codes and Cryptography

, Volume 55, Issue 2–3, pp 297–310 | Cite as

Enclosings of λ-fold 4-cycle systems

  • N. A. Newman
  • C. A. Rodger
Article

Abstract

In this paper we solve the problem of enclosing a λ-fold 4-cycle system of order v into a (λ + m)-fold 4-cycle system of order v + u for all m > 0 and u ≥ 1. An ingredient is constructed that is of interest on its own right, namely the problem of finding equitable partial 4-cycle systems of λ K v . This supplementary solution builds on a result of Raines and Staniszlo.

Keywords

Enclosing 4-cycles Embedding 

Mathematics Subject Classification (2000)

05B30 05C38 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen L.D., Hilton A.J.W., Mendelsohn E.: Embedding partial Steiner triple systems. Proc. Lond. Math. Soc. 41, 557–576 (1980)MATHCrossRefMathSciNetGoogle Scholar
  2. Bermond J.-C., Huang C., Sotteau D.: Balanced cycle and circuit designs: even cases. Ars Combinatoria 5, 292–318 (1978)MathSciNetGoogle Scholar
  3. Billington E.J., Fu H., Rodger C.A.: Packing complete multipartite graphs with 4-cycles. J Comb. Des. 9, 107–127 (2001)MATHCrossRefMathSciNetGoogle Scholar
  4. Bryant D., Horsley D.: A proof of Lindner’s conjecture on embeddings of partial Steiner triple systems. J. Comb. Des. 17(1), 63–89 (2009)MATHCrossRefMathSciNetGoogle Scholar
  5. Bryant D.E., Rodger C.A.: On the Doyen–Wilson theorem for m-cycle systems. J. Comb. Des. 4, 253–271 (1994)CrossRefMathSciNetGoogle Scholar
  6. Bryant D.E., Rodger C.A.: The Doyen–Wilson theorem extended to 5-cycle. J. Comb. Theory A 68, 218–225 (1994)MATHCrossRefMathSciNetGoogle Scholar
  7. Bryant D., Hoffman D.G., Rodger C.A.: 5-Cycle systems with holes full. Des. Codes Cryptogr. 8, 103–108 (1996)MATHMathSciNetGoogle Scholar
  8. Bryant D.E., Rodger C.A., Spicer E.R.: Embeddings of m-cycle systems and incomplete m-cycle systems: m ≤ 14. Discrete Math. 171, 55–75 (1997)MATHCrossRefMathSciNetGoogle Scholar
  9. Bryant D., Horsley D., Maenhaut B.: Decompositions into 2-regular subgraphs and equitable partial cycle decompositions. J. Comb. Theory Ser. B 93, 67–72 (2005)MATHCrossRefMathSciNetGoogle Scholar
  10. Colbourn C.J., Hamm R.C., Rosa A.: Embedding, immersing, and enclosing. In: Proceedings of the Sixteenth Southeastern international Conference on Combinatorics, Graph Theory and Computing Boca Raton, FL, 1985). Congr. Num. 47, 229–236 (1985).Google Scholar
  11. Doyen J., Wilson R.M.: Embeddings of Steiner triple systems. Discrete Math. 5, 229–239 (1973)MATHCrossRefMathSciNetGoogle Scholar
  12. Fu H.L., Rodger C.A.: 4-Cycle Group-divisible designs with two associate classes. Comb. Prob. Comput. 10, 317–343 (2001)MATHMathSciNetGoogle Scholar
  13. Horton J.D., Lindner C.C., Rodger C.A.: A small embedding for partial 4-cycle systems. JCMCC 5, 23–26 (1989)MATHMathSciNetGoogle Scholar
  14. Horak P., Lindner C.C.: A small embedding for partial even-cycle systems. J. Comb. Des. 7, 205–215 (1999)MATHCrossRefMathSciNetGoogle Scholar
  15. Hurd S.P., Sarvate D.G.: Minimal enclosings of triple systems II: increasing the index by 1. Ars. Comb. 68, 263–282 (2003)MATHMathSciNetGoogle Scholar
  16. Hurd S.P., Munson P., Sarvate D.G.: Minimal enclosings of triple systems I: adding one point. Ars. Comb. 68, 145–159 (2003)MATHMathSciNetGoogle Scholar
  17. Lindner C.C.: A Partial Steiner triple system of order n can be embedded in a Steiner triple system of order 6n + 3. J. Comb. Theory Ser. A 18(3), 349–351 (1975)MATHCrossRefMathSciNetGoogle Scholar
  18. Lindner C.C., Rodger C.A. (1993). A partial m = (2k + 1)-cycle system of order n can be embedded in an m-cycle system of order (2n + 1)m. Discrete Math. 117, 151–159MATHCrossRefMathSciNetGoogle Scholar
  19. Lindner C.C., Rodger C.A.: Design Theory. CRC Press, Boca Raton (1997)MATHGoogle Scholar
  20. Newman N.A., Rodger C.A.: Enclosings of λ-fold triple systems. Utilitas Math. (to be published).Google Scholar
  21. Raines M.E., Staniiszlo Z.: Equitable partial cycle systems. Aust. J. Comb. 19, 149–156 (1999)MATHGoogle Scholar
  22. Schonheim J., Bialistocki A.: Packing and covering the complete graph with 4-cycles. Can. Math. Bull. 18, 703–708 (1975)Google Scholar
  23. Sotteau D.: Decompositions of \({K_{m,n}(K_{m,n}^{*})}\) into cycles of length 2k. J. Comb. Theory Ser. B 30, 75–81 (1981)MATHCrossRefMathSciNetGoogle Scholar
  24. Treash C.: The completion of finite incomplete Steiner triple systems with applications to loop theory. J. Comb. Theory Ser. A 10, 259–265 (1971)MATHCrossRefMathSciNetGoogle Scholar
  25. West D.B.: Introduction to Graph Theory. Prentice Hall (2001).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mathematics, Leatherman Science FacilityFrancis Marion UniversityFlorenceUSA
  2. 2.Department of Mathematics and StatisticsAuburn UniversityAuburnUSA

Personalised recommendations