Designs, Codes and Cryptography

, Volume 54, Issue 3, pp 241–251 | Cite as

Twisted Fano spaces and their classification, linear completions of systems of triangle perspectives

  • Krzysztof Petelczyc
  • Małgorzata Prażmowska


Twisted Fano spaces i.e. linear spaces with the parameters of PG(3, 2) which contain a pencil of Fano subplanes are completely classified and characterized. In particular, it is proved that twisted Fano spaces are exactly all the linear completions of systems of triangle perspectives with point degree 4.


Veblen configuration Multi-Veblen configuration System of triangle perspectives Twisted Fano space Fano projective plane Partial Steiner triple system 

Mathematics Subject Classification (2000)

05B30 51E30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bryant D., Hornsley D.: The embedding problem for partial Steiner triple systems. Aust. Math. Soc. Gazette 33(2), 111–115 (2006)Google Scholar
  2. 2.
    Bryant D., Hornsley D.: A proof of Lindner’s conjecture on embeddings of partial Steiner triple systems (submitted).Google Scholar
  3. 3.
    Freitag R., Kreuzer A.: Linear spaces with many projective planes. J. Geom. 79, 67–74 (2004)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Kantor S.: Die Konfigurationen (3, 3)10. Sitzungsberichte Wiener Akad. 84, 1291–1314 (1881)Google Scholar
  5. 5.
    Lanman K.T.: The taxonomy of various combinatoric and geometric configurations. In: Proceedings of the 2001 Butler University Undergraduate Research Conference. Holcomb Research Institute.Google Scholar
  6. 6.
    Mathon R.A., Phelps K.T., Rosa A.: Small Steiner triple systems and their properties. Ars Combin. 15, 3–110 (1983); Errata: Small Steiner triple systems and their properties. Ars Combin. 16, 286 (1983).Google Scholar
  7. 7.
    Petelczyc K., Prażmowska M.: 103-configurations and projective realizability of multiplied configurations. Des. Codes Cryptogr. 51, 45–54 (2009)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Petelczyc K., Prażmowska M.: On the Bol and related configurations (submitted).Google Scholar
  9. 9.
    Pickert G.: Projektive Ebenen. Springer Verlag, Berlin (1975)MATHGoogle Scholar
  10. 10.
    Prażmowska M.: Multiple perspectives and generalizations of the Desargues configuration. Demonstratio Math. 39(4), 887–906 (2006)MATHMathSciNetGoogle Scholar
  11. 11.
    Prażmowska M.: Twisted projective spaces and linear completions of some partial Steiner triple systems. Contributions Algebra Geom. 49(2), 341–368 (2008)MATHGoogle Scholar
  12. 12.
    Prażmowska M., Prażmowski K.: Some generalization of Desargues and Veronese configurations. Serdica Math. J. 32(2–3), 185–208 (2006)MathSciNetGoogle Scholar
  13. 13.
    Prażmowska M., Prażmowski K.: Combinatorial veronese structures, their geometry, and problems of embeddability. Result. Math. 51, 275–308 (2008)MATHCrossRefGoogle Scholar
  14. 14.
    Prażmowska M.: On the existence of projective embeddings of multiveblen configurations. Bull. Belg. Math. Soc. Simon Stevin (to appear).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of BiałystokBiałystokPoland

Personalised recommendations