Advertisement

Designs, Codes and Cryptography

, Volume 53, Issue 1, pp 59–68 | Cite as

On the maximality of linear codes

  • T. L. Alderson
  • András Gács
Article

Abstract

We show that if a linear code admits an extension, then it necessarily admits a linear extension. There are many linear codes that are known to admit no linear extensions. Our result implies that these codes are in fact maximal. We are able to characterize maximal linear (n, k, d) q -codes as complete (weighted) (n, nd)-arcs in PG(k − 1, q). At the same time our results sharply limit the possibilities for constructing long non-linear codes. The central ideas to our approach are the Bruen-Silverman model of linear codes, and some well known results on the theory of directions determined by affine point-sets in PG(k, q).

Keywords

Codes Non-linear codes Code extension BRS model 

Mathematics Subject Classifications (2000)

94B27 51E20 94B65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abatangelo V.: A class of complete [(q + 8)/3]-arcs of PG(2, q), with q = 2h and h(≥6) even. Ars Combin. 16, 103–111 (1983)MATHMathSciNetGoogle Scholar
  2. 2.
    Alderson T., Bruen A.A., Silverman R.: Maximum distance separable codes and arcs in projective spaces. J. Combin. Theory Ser. A 114(6), 1101–1117 (2007)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alderson T.L.: On MDS codes and Bruen-Silverman codes. PhD Thesis, University of Western Ontario (2002).Google Scholar
  4. 4.
    Alderson T.L., Bruen A.A.: Codes from cubic curves and their extensions. Electron. J. Combin. 15(1), Research paper 42, 9 (2008).Google Scholar
  5. 5.
    Alderson T.L., Bruen A.A.: Coprimitive sets and inextendable codes. Des. Codes Cryptogr. 47(1–3), 113–124 (2008)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Alderson T.L., Bruen A.A.: Maximal AMDS codes. Appl. Algebra Engrg. Comm. Comput. 19(2), 87–98 (2008)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ball S.: The number of directions determined by a function over a finite field. J. Combin. Theory Ser. A 104(2), 341–350 (2003)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ball S.: On the graph of a function in many variables over a finite field. Des. Codes Cryptogr. 47(1–3), 159–164 (2008)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Ball S., Hirschfeld J.W.P.: Bounds on (n, r)-arcs and their application to linear codes. Finite Fields Appl. 11(3), 326–336 (2005)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Bierbrauer J.: Introduction to coding theory. Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton, FL (2005)Google Scholar
  11. 11.
    Blokhuis A., Ball S., Brouwer A.E., Storme L., Szőnyi T.: On the number of slopes of the graph of a function defined on a finite field. J. Combin. Theory Ser. A 86(1), 187–196 (1999)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Blokhuis A., Bruen A.A., Thas J.A.: Arcs in PG(n, q), MDS-codes and three fundamental problems of B. Segre—some extensions. Geom. Dedicata 35(1–3), 1–11 (1990)MATHMathSciNetGoogle Scholar
  13. 13.
    Bruen A.A., Forcinito M.A.: Cryptography, information theory, and error-correction. A handbook for the 21st century. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ (2005).Google Scholar
  14. 14.
    Bruen A.A., Thas J.A., Blokhuis A.: On M.D.S. codes, arcs in PG(n, q) with q even, and a solution of three fundamental problems of B. Segre. Invent. Math. 92(3), 441–459 (1988)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Casse L.R.A.: A solution to Beniamino Segre’s “Problem I r, q” for q even. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 46(8), 13–20 (1969)MATHMathSciNetGoogle Scholar
  16. 16.
    Hadnagy É.: Small complete arcs in PG(2, p). Finite Fields Appl. 5, 1–12 (1999)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hirschfeld J.W.P.: The number of points on a curve, and applications. Arcs and curves: the legacy of Beniamino Segre. Rend. Mat. Appl. 26(1), 13–28 (2006)MATHMathSciNetGoogle Scholar
  18. 18.
    Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory and finite projective spaces: update 2001. In: Blokhuis, A., Hirschfeld, J.W.P., Jungnickel, D., Thas, J.A. (eds) Finite Geometries. Developments in Mathematics, vol. 3, pp. 201–246. Kluwer Academic Publications, Dordrecht (2001)Google Scholar
  19. 19.
    Hirschfeld J.W.P., Voloch J.F.: The characterization of elliptic curves over finite fields. J. Austral. Math. Soc. Ser. A 45(2), 275–286 (1988)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kim J.H., Vu V.H.: Small complete arcs in projective planes. Combinatorica 23(2), 311–363 (2003)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Korchmáros G.: New examples of complete k-arcs in PG(2, q). Eur. J. Combin. 4(4), 329–334 (1983)MATHGoogle Scholar
  22. 22.
    MacWilliams F.J., Sloane N.J.A.: The Theory of Error-correcting Codes. II. North-Holland Mathematical Library, vol. 16. North-Holland Publishing Co., Amsterdam (1977).Google Scholar
  23. 23.
    Marcugini S., Milani A., Pambianco F.: Complete arcs in PG(2,25): the spectrum of the sizes and the classification of the smallest complete arcs. Discrete Math. 307(6), 739–747 (2007)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Rédei L.: Lacunary Polynomials Over Finite Fields. North-Holland Publishing Co., Amsterdam (1973). Translated from the German by I. Földes.Google Scholar
  25. 25.
    Roth R.: Introduction to Coding Theory. Cambridge University Press, New York, NY, USA (2006)MATHGoogle Scholar
  26. 26.
    Rück H.G.: A note on elliptic curves over finite fields. Math. Comp. 49(179), 301–304 (1987)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Segre B.: Curve razionali normali e k-archi negli spazi finiti. Ann. Mat. Pura Appl. 39(4), 357–379 (1955)MATHMathSciNetGoogle Scholar
  28. 28.
    Storme L.: Small arcs in projective spaces. J. Geom. 58(1–2), 179–191 (1997)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Storme L., Sziklai P.: Linear point sets and Rédei type k-blocking sets in PG(n, q). J. Algebraic Combin. 14(3), 221–228 (2001)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Storme L., Szőnyi T.: Intersection of arcs and normal rational curves in spaces of even characteristic. J. Geom. 51(1–2), 150–166 (1994)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Szőnyi T.: Small complete arcs in Galois planes. Geom. Dedicata 18(2), 161–172 (1985)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Thas J.A.: Finite geometries, varieties and codes. In: Proceedings of the International Congress of Mathematicians, Berlin (1998) vol. III, pp. 397–408 (electronic).Google Scholar
  33. 33.
    van Lint J.H.: Introduction to Coding Theory, Graduate Texts in Mathematics, 3rd edn. vol. 86. Springer-Verlag, Berlin (1999).Google Scholar
  34. 34.
    Waterhouse W.C.: Abelian varieties over finite fields. Ann. Sci. École Norm. Sup. 2(4), 521–560 (1969)MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of New Brunswick Saint JohnSaint JohnCanada
  2. 2.Department of Computer ScienceEötvös Loránd UniversityBudapestHungary

Personalised recommendations