Skip to main content
Log in

On the maximality of linear codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We show that if a linear code admits an extension, then it necessarily admits a linear extension. There are many linear codes that are known to admit no linear extensions. Our result implies that these codes are in fact maximal. We are able to characterize maximal linear (n, k, d) q -codes as complete (weighted) (n, nd)-arcs in PG(k − 1, q). At the same time our results sharply limit the possibilities for constructing long non-linear codes. The central ideas to our approach are the Bruen-Silverman model of linear codes, and some well known results on the theory of directions determined by affine point-sets in PG(k, q).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abatangelo V.: A class of complete [(q + 8)/3]-arcs of PG(2, q), with q = 2h and h(≥6) even. Ars Combin. 16, 103–111 (1983)

    MATH  MathSciNet  Google Scholar 

  2. Alderson T., Bruen A.A., Silverman R.: Maximum distance separable codes and arcs in projective spaces. J. Combin. Theory Ser. A 114(6), 1101–1117 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alderson T.L.: On MDS codes and Bruen-Silverman codes. PhD Thesis, University of Western Ontario (2002).

  4. Alderson T.L., Bruen A.A.: Codes from cubic curves and their extensions. Electron. J. Combin. 15(1), Research paper 42, 9 (2008).

    Google Scholar 

  5. Alderson T.L., Bruen A.A.: Coprimitive sets and inextendable codes. Des. Codes Cryptogr. 47(1–3), 113–124 (2008)

    Article  MathSciNet  Google Scholar 

  6. Alderson T.L., Bruen A.A.: Maximal AMDS codes. Appl. Algebra Engrg. Comm. Comput. 19(2), 87–98 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ball S.: The number of directions determined by a function over a finite field. J. Combin. Theory Ser. A 104(2), 341–350 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ball S.: On the graph of a function in many variables over a finite field. Des. Codes Cryptogr. 47(1–3), 159–164 (2008)

    Article  MathSciNet  Google Scholar 

  9. Ball S., Hirschfeld J.W.P.: Bounds on (n, r)-arcs and their application to linear codes. Finite Fields Appl. 11(3), 326–336 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bierbrauer J.: Introduction to coding theory. Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton, FL (2005)

    Google Scholar 

  11. Blokhuis A., Ball S., Brouwer A.E., Storme L., Szőnyi T.: On the number of slopes of the graph of a function defined on a finite field. J. Combin. Theory Ser. A 86(1), 187–196 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Blokhuis A., Bruen A.A., Thas J.A.: Arcs in PG(n, q), MDS-codes and three fundamental problems of B. Segre—some extensions. Geom. Dedicata 35(1–3), 1–11 (1990)

    MATH  MathSciNet  Google Scholar 

  13. Bruen A.A., Forcinito M.A.: Cryptography, information theory, and error-correction. A handbook for the 21st century. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ (2005).

  14. Bruen A.A., Thas J.A., Blokhuis A.: On M.D.S. codes, arcs in PG(n, q) with q even, and a solution of three fundamental problems of B. Segre. Invent. Math. 92(3), 441–459 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Casse L.R.A.: A solution to Beniamino Segre’s “Problem I r, q ” for q even. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 46(8), 13–20 (1969)

    MATH  MathSciNet  Google Scholar 

  16. Hadnagy É.: Small complete arcs in PG(2, p). Finite Fields Appl. 5, 1–12 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hirschfeld J.W.P.: The number of points on a curve, and applications. Arcs and curves: the legacy of Beniamino Segre. Rend. Mat. Appl. 26(1), 13–28 (2006)

    MATH  MathSciNet  Google Scholar 

  18. Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory and finite projective spaces: update 2001. In: Blokhuis, A., Hirschfeld, J.W.P., Jungnickel, D., Thas, J.A. (eds) Finite Geometries. Developments in Mathematics, vol. 3, pp. 201–246. Kluwer Academic Publications, Dordrecht (2001)

    Google Scholar 

  19. Hirschfeld J.W.P., Voloch J.F.: The characterization of elliptic curves over finite fields. J. Austral. Math. Soc. Ser. A 45(2), 275–286 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kim J.H., Vu V.H.: Small complete arcs in projective planes. Combinatorica 23(2), 311–363 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Korchmáros G.: New examples of complete k-arcs in PG(2, q). Eur. J. Combin. 4(4), 329–334 (1983)

    MATH  Google Scholar 

  22. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-correcting Codes. II. North-Holland Mathematical Library, vol. 16. North-Holland Publishing Co., Amsterdam (1977).

  23. Marcugini S., Milani A., Pambianco F.: Complete arcs in PG(2,25): the spectrum of the sizes and the classification of the smallest complete arcs. Discrete Math. 307(6), 739–747 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rédei L.: Lacunary Polynomials Over Finite Fields. North-Holland Publishing Co., Amsterdam (1973). Translated from the German by I. Földes.

  25. Roth R.: Introduction to Coding Theory. Cambridge University Press, New York, NY, USA (2006)

    MATH  Google Scholar 

  26. Rück H.G.: A note on elliptic curves over finite fields. Math. Comp. 49(179), 301–304 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  27. Segre B.: Curve razionali normali e k-archi negli spazi finiti. Ann. Mat. Pura Appl. 39(4), 357–379 (1955)

    MATH  MathSciNet  Google Scholar 

  28. Storme L.: Small arcs in projective spaces. J. Geom. 58(1–2), 179–191 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. Storme L., Sziklai P.: Linear point sets and Rédei type k-blocking sets in PG(n, q). J. Algebraic Combin. 14(3), 221–228 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Storme L., Szőnyi T.: Intersection of arcs and normal rational curves in spaces of even characteristic. J. Geom. 51(1–2), 150–166 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  31. Szőnyi T.: Small complete arcs in Galois planes. Geom. Dedicata 18(2), 161–172 (1985)

    Article  MathSciNet  Google Scholar 

  32. Thas J.A.: Finite geometries, varieties and codes. In: Proceedings of the International Congress of Mathematicians, Berlin (1998) vol. III, pp. 397–408 (electronic).

  33. van Lint J.H.: Introduction to Coding Theory, Graduate Texts in Mathematics, 3rd edn. vol. 86. Springer-Verlag, Berlin (1999).

  34. Waterhouse W.C.: Abelian varieties over finite fields. Ann. Sci. École Norm. Sup. 2(4), 521–560 (1969)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Gács.

Additional information

Communicated by Simeon Ball.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alderson, T.L., Gács, A. On the maximality of linear codes. Des. Codes Cryptogr. 53, 59–68 (2009). https://doi.org/10.1007/s10623-009-9293-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-009-9293-z

Keywords

Mathematics Subject Classifications (2000)

Navigation