Skip to main content
Log in

A generalized Gleason–Pierce–Ward theorem

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The Gleason–Pierce–Ward theorem gives constraints on the divisor and field size of a linear divisible code over a finite field whose dimension is half of the code length. This result is a departure point for the study of self-dual codes. In recent years, additive codes have been studied intensively because of their use in additive quantum codes. In this work, we generalize the Gleason–Pierce–Ward theorem on linear codes over GF(q), q = p m, to additive codes over GF(q). The first step of our proof is an application of a generalized upper bound on the dimension of a divisible code determined by its weight spectrum. The bound is proved by Ward for linear codes over GF(q), and is generalized by Liu to any code as long as the MacWilliams identities are satisfied. The trace map and an analogous homomorphism \({x\mapsto x-x^p}\) on GF(q) are used to complete our proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Betsumiya K., Harada M.: Optimal self-dual codes over \({\mathbb{F}_2\times\mathbb{F}_2}\) with respect to the Hamming weight. IEEE Trans. Inf. Theory 50, 356–358 (2004)

    Article  MathSciNet  Google Scholar 

  2. Bouyuklieva S.: On the minumum weights of type IV codes over \({\mathbb{Z}_4}\) with certain lengths. In: International Workshop on Coding and Cryptography (Paris 2001). Electronic Notes in Discrete Mathematics, vol. 6, 7 pp. (electronic). Elsevier, Amsterdam (2001).

  3. Bouyuklieva S.: Some results on type IV codes over \({\mathbb{Z}_4}\). IEEE Trans. Inf. Theory 48, 768–773 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bouyuklieva S., Harada M.: On type IV self-dual codes over \({\mathbb{Z}_4}\). Discrete Math. 247, 25–50 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error-correction via codes over GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Delsarte P.: Bounds for unrestricted codes by linear programming. Philips J. Res. 27, 272–289 (1972)

    MATH  MathSciNet  Google Scholar 

  7. Dougherty S.T., Gaborit P., Harada M., Munemasa A., Solé P.: Type IV self-dual codes over rings. IEEE Trans. Inf. Theory 45, 2345–2360 (1999)

    Article  MATH  Google Scholar 

  8. Dougherty S.T., Gulliver A.T., Oura M.: Higher weights for ternary and quaternary self-dual codes. Des. Codes Cryptogr. 38, 97–112 (2006)

    Article  MathSciNet  Google Scholar 

  9. Gulliver A.T., Harada M.: Construction of optimal type IV self-dual codes over \({\mathbb{F}_2+u\mathbb{F}_2}\). IEEE Trans. Inf. Theory 45, 2520–2521 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Harada M., Munemasa A.: Classification of type IV self-dual \({\mathbb{Z}_4}\)-codes of length 16. Finite Fields Appl. 6, 244–254 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Huffman W.C.: On the classification and enumeration of self-dual codes. Finite Fields Appl. 11, 451–490 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Huffman W.C., Pless V.S.: Fundamentals of error-correcting codes. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  13. Kennedy G.: Weight distribution of linear codes and the Gleason–Pierce theorem. J. Comb. Theory Ser. A 67, 72–88 (1994)

    Article  MATH  Google Scholar 

  14. Kennedy G.T., Pless V.: On designs and formally self-dual codes. Des. Codes Cryptogr. 4, 43–55 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kim J.L., Pless V.: A note on formally self-dual even codes of length divisible by 8. Finite Fields Appl. 13, 224–229 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liu X.: On divisible codes over finite fields. Ph.D. thesis, Caltech. http://resolver.caltech.edu/CaltechETD:etd-05252006-010331 (2006).

  17. Liu X.: An equivalence of Ward’s bound and its application in nonlinear divisible codes. IEEE Trans. Inf. Theory (under review).

  18. Rains E.M., Sloane N.J.A.: Self-dual codes. In: Pless, V.S., Huffman , W.C.(eds) Handbook of Coding Theory, pp. 177–294. Elsevier, Amsterdam (1998)

    Google Scholar 

  19. Sloane N.J.A.: Self-dual codes and lattices, in relations between combinatorics and other parts of mathematics. Proc. Symp. Pure Math. 34, 273–308 (1979)

    MathSciNet  Google Scholar 

  20. Ward H.N.: Divisible codes. Arch. Math. 36, 485–499 (1981)

    Article  MATH  Google Scholar 

  21. Ward H.N.: A bound for divisible codes. IEEE Trans. Inf. Theory 38, 191–194 (1992)

    Article  MATH  Google Scholar 

  22. Ward H.N.: Quadratic residue codes and divisibility. In: Pless, V.S., Huffman, W.C.(eds) Handbook of Coding Theory, pp. 827–870. Elsevier, Amsterdam (1998)

    Google Scholar 

  23. Ward H.N.: The divisible code bound revisited. J. Comb. Theory Ser. A 94, 34–50 (2001)

    Article  MATH  Google Scholar 

  24. Wilson R.M.: A lemma on polynomials modulo p m and applications to coding theory. Discrete Math. 306, 3154–3165 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wood J.A.: Duality for modules over finite rings and applications to coding theory. Am. J. Math. 121, 555–575 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Liu.

Additional information

Communicated by R. Hill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JL., Liu, X. A generalized Gleason–Pierce–Ward theorem. Des. Codes Cryptogr. 52, 363–380 (2009). https://doi.org/10.1007/s10623-009-9286-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-009-9286-y

Keywords

Mathematics Subject Classification (2000)

Navigation