Designs, Codes and Cryptography

, Volume 49, Issue 1–3, pp 187–197 | Cite as

Characterization results on arbitrary non-weighted minihypers and on linear codes meeting the Griesmer bound



We present characterization results on non-weighted minihypers. For minihypers in PG(k−1,q), q not a square, we improve greatly the results of Hamada, Helleseth, and Maekawa, and of Ferret and Storme. The largest improvements are obtained for q prime.


Minihypers Griesmer bound Blocking sets 

AMS Classifications

05B25 51E20 51E21 94B05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ball S. (1996). Multiple blocking sets and arcs in finite planes. J. London Math. Soc. (2) 54(3): 581–593MATHMathSciNetGoogle Scholar
  2. 2.
    Belov B.I., Logachev V.N., Sandimirov V.P. (1974). Construction of a class of linear binary codes that attain the Varšamov-Griesmer bound. Problemy Peredači Informacii 10(3): 36–44MATHGoogle Scholar
  3. 3.
    Blokhuis A.: On multiple nuclei and a conjecture of Lunelli and Sce. Bull. Belg. Math. Soc. Simon Stevin, 1(3), 349–353 (1994). A tribute to J. A. Thas (Gent, 1994).Google Scholar
  4. 4.
    Blokhuis A., Storme L., Szonyi T. (1999). Lacunary polynomials, multiple blocking sets and Baer subplanes. J. London Math. Soc. 2 60(2): 321–332CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bruen A.A. (1971). Blocking sets in finite projective planes. SIAM J. Appl. Math. 21: 380–392MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bruen A.A. (1992). Polynomial multiplicities over finite fields and intersection sets. J. Combin. Theory Ser. A 60(1): 19–33MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    De Beule J., Metsch K., Storme L.: Characterization results on arbitrary weighted minihypers and on linear codes meeting the Griesmer bound. Adv. Math. Commun. (submitted).Google Scholar
  8. 8.
    Ferret S., Storme L. (2002). Minihypers and linear codes meeting the Griesmer bound: improvements to results of Hamada, Helleseth and Maekawa. Des. Codes Cryptogr. 25(2): 143–162MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ferret S., Storme L. (2006). A classification result on weighted \(\{\delta v_{\mu+1},\delta v_\mu;N,p^3\}\) -minihypers. Discrete Appl. Math. 154(2): 277–293MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ferret S., Storme L., Sziklai P., Weiner Zs.: A t mod p) result on weighted multiple (nk)-blocking sets in PG(n,q) Adv. Incidence Geom. (to appear).Google Scholar
  11. 11.
    Govaerts P., Storme L. (2002). On a particular class of minihypers and its applications. II. Improvements for q square. J. Combin. Theory Ser. A 97(2): 369–393MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Griesmer J.H. (1960). A bound for error-correcting codes. IBM J. Res. Dev. 4: 532–542MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Hamada N.: Characterization of min·hypers in a finite projective geometry and its applications to error-correcting codes. Sūrikaisekikenkyūsho Kōokyūroku 607, 52–69 (1987). Designs and finite geometries (Kyoto, 1986).Google Scholar
  14. 14.
    Hamada N. (1993). A characterization of some [n,k,d;q]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry. Discrete Math. 116(1-3): 229–268MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hamada N., Helleseth T. (1993). A characterization of some q-ary codes (q > (h−1)2, h ≥ 3) meeting the Griesmer bound. Math. Japon. 38(5): 925–939MATHMathSciNetGoogle Scholar
  16. 16.
    Hamada N., Maekawa T. (1997). A characterization of some q-ary linear codes (q > (h−1)2, h ≥ 3) meeting the Griesmer bound. II. Math. Japon. 46(2): 241–252MATHMathSciNetGoogle Scholar
  17. 17.
    Hamada N., Tamari F. (1978). On a geometrical method of construction of maximal t-linearly independent sets. J. Combin. Theory Ser. A 25(1): 14–28MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Hirschfeld J.W.P.: Projective geometries over finite fields. Oxford Mathematical Monographs, 2nd edn. The Clarendon Press, Oxford University Press, New York (1998).Google Scholar
  19. 19.
    Pless V.S., Huffman W.C., Brualdi R.A.: An introduction to algebraic codes. In: Handbook of Coding Theory, vol. I, II, pp. 3–139. North-Holland, Amsterdam (1998).Google Scholar
  20. 20.
    Solomon G., Stiffler J.J. (1965). Algebraically punctured cyclic codes. Inform. Control 8: 170–179MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Pure Mathematics and Computer AlgebraGhent UniversityGhentBelgium
  2. 2.Mathematisches InstitutJustus-Liebig-UniversitätGiessenGermany

Personalised recommendations