Advertisement

Designs, Codes and Cryptography

, Volume 46, Issue 2, pp 175–189 | Cite as

Designs from subcode supports of linear codes

  • Thomas Britz
  • Keisuke Shiromoto
Article

Abstract

We present new constructions of t-designs by considering subcode supports of linear codes over finite fields. In particular, we prove an Assmus-Mattson type theorem for such subcodes, as well as an automorphism characterization. We derive new t-designs (t  ≤  5) from our constructions.

Keywords

t-design Linear code Generalized Hamming weight Higher weight enumerator Assmus-Mattson Theorem 

AMS Classifications

94B05 05B05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Assmus E.F. Jr., Mattson H.F. Jr. (1969). New 5-designs. J. Comb. Theory 6, 122–151MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Britz D., Britz T., Shiromoto K., Sørensen H.K. (2007). The higher weight enumerators of the doubly-even, self-dual [48, 24, 12] code. IEEE Trans. Inform. Theory 53, 2567–2571CrossRefMathSciNetGoogle Scholar
  3. 3.
    Britz T., Shiromoto K.: Designs from matroids, preprint.Google Scholar
  4. 4.
    Calderbank R., Delsarte P., Sloane N.J.A. (1991). A strengthening of the Assmus-Mattson theorem. IEEE Trans. Inform. Theory 37, 1261–1268MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Colbourn C.J., Dinitz J.H. (2007). Handbook of Combinatorial Designs (2nd edn). CRC Press, Boca RatonMATHGoogle Scholar
  6. 6.
    Dowling T.A.: Codes, packings and the critical problem, Applicazioni (Univ. Perugia, Perugia, 1970), Ist. Mat., Univ. Perugia, Perugia (1971) 209–224.Google Scholar
  7. 7.
    Houghten S., Lam C., Thiel L., Parker R.A. (2003). The extended quadratic residue code is the only (48, 24, 12) self-dual doubly-even code. IEEE Trans. Inform. Theory 49, 53–59MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Huffman W.C., Pless V.S. (2003). Fundamentals of Error-Correcting Codes. Cambridge University Press, CambridgeMATHGoogle Scholar
  9. 9.
    Kim J., Pless V. (2003). Designs in additive codes over GF(4). Des. Codes Cryptogr. 30, 187–199MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kløve T. (1978). The weight distribution of linear codes over GF(q l) having generator matrix over GF(q). Discrete Math. 23, 159–168CrossRefMathSciNetGoogle Scholar
  11. 11.
    Koch H. (1989). On self-dual, doubly-even codes of length 32. J. Comb. Theory, Ser. A 51, 63–76MATHCrossRefGoogle Scholar
  12. 12.
    Kramer E.S., Magliveras S.S., Mesner D.M. (1981). t-designs from the large mathieu groups. Discrete Math. 36, 171–189MATHMathSciNetGoogle Scholar
  13. 13.
    Leon J.S., Pless V.S., Sloane N.J. (1981). On ternary self-dual codes of length 24. IEEE Trans. Inform. Theory 27, 176–180MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    The Magma Computational Algebra System for Algebra, Number Theory and Geometry, Version 2.12, University of Sydney (2005).Google Scholar
  15. 15.
    MacWilliams F.J., Sloane N.J.: The Theory of Error-Correcting Codes, North-Holland Mathematical Library, 16., North-Holland Publishing Company, Amsterdam (1978).Google Scholar
  16. 16.
    Milenkovic O., Coffey S.T., Compton K.J. (2003). The third support weight enumerators of the doubly-even, self-dual [32, 16, 8] codes. IEEE Trans. Inform. Theory 49: 741–746CrossRefMathSciNetGoogle Scholar
  17. 17.
    Pless V.S., Huffman W.C. (eds). (1998). Handbook of Coding Theory II. Elsevier Science B.V., AmsterdamGoogle Scholar
  18. 18.
    Shiromoto K. (1996). A new MacWilliams type identity for linear codes. Hokkaido Math. J. 25, 651–656MATHMathSciNetGoogle Scholar
  19. 19.
    Shiromoto K. (1999). The weight enumerator of linear codes over GF(q m) having generator matrix over GF(q). Des. Codes Cryptogr. 16, 87–92MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Tsfasman M.A., Vlădut S.G. (1995). Geometric approach to higher weights. IEEE Trans. Inform. Theory 41, 1564–1588MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    van Lint J.H., Wilson R.M. (1992). A Course in Combinatorics. Cambridge University Press, CambridgeMATHGoogle Scholar
  22. 22.
    Wei V.K. (1991). Generalized Hamming weights for linear codes. IEEE Trans. Inform. Theory 37, 1412–1418MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of MathematicsUniversity of New South WalesSydneyAustralia
  2. 2.Department of Information SystemsAichi Prefectural UniversityNagakute, AichiJapan

Personalised recommendations