Advertisement

Designs, Codes and Cryptography

, Volume 45, Issue 3, pp 365–377 | Cite as

Scroll codes

  • Gert Monstad Hana
  • Trygve Johnsen
Article

Abstract

We study algebraic geometric codes obtained from rational normal scrolls. We determine the complete weight hierarchy and spectrum of these codes.

Keywords

Rational normal scrolls Linear codes 

AMS Classifications

94B27 14G50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hansen S.H. (2001). Error-correcting codes from higher-dimensional varieties. Finite Fields Appl. 7, 530–552MATHCrossRefGoogle Scholar
  2. 2.
    Lomont C.C.: Error-correcting codes on algebraic surfaces, math.NT/0309123 (2003).Google Scholar
  3. 3.
    Nakashima T. (2006). Error-correcting codes on projective bundles. Finite Fields Appl. 12, 222–231MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Reid M.:Chapters on algebraic surfaces. In: Complex Algebraic Geometry (Park City 1993), IAS/Park City Math. Ser. 3, 3–159 (1997).Google Scholar
  5. 5.
    Schaathun H.G. (2000). The weight hierarchy of product codes. IEEE Trans. Inform. Theory 46(7):2648–2651MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Schaathun H.G., Willems W. (2000). A lower bound on the weight hierarchy of product codes. Discrete Appl. Math 128(1):251–261CrossRefMathSciNetGoogle Scholar
  7. 7.
    Schreyer F.O. (1986). Syzygies of canonical curves and special linear series. Math. Ann. 275, 105–137MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Serre J.P. (1991). Lettre a M. Tsfasman. Asterisque 198-200: 351–353MathSciNetGoogle Scholar
  9. 9.
    Stevens J.: Rolling factor deformations and extensions of canonical curves. math.AG/0006189 (2000).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BergenBergenNorway

Personalised recommendations