Advertisement

Designs, Codes and Cryptography

, Volume 47, Issue 1–3, pp 225–235 | Cite as

Two results on maximum nonlinear functions

  • Doreen Hertel
  • Alexander Pott
Article

Abstract

Maximum nonlinear functions \(F: \mathbb F_{2^m}\to \mathbb F_{2^m}\) are widely used in cryptography because the coordinate functions F β (x) := tr(β F(x)), \(\beta \in \mathbb F^{*}_{2^m}\) , have large distance to linear functions. Moreover, maximum nonlinear functions have good differential properties, i.e. the equations F(x + a) − F(x) = b, \(a,b \in \mathbb F_{2^m}, b\neq 0\) , have 0 or 2 solutions. Two classes of maximum nonlinear functions are the Gold power functions \(x^{2^{k}+1}\) , gcd(k, m) = 1, and the Kasami power functions \(x^{2^{2k}-2^{k}+1}\) , gcd(k, m) = 1. The main results in this paper are: (1) We characterize the Gold power functions in terms of the distance of their coordinate functions to characteristic functions of subspaces of codimension 2 in \(\mathbb F_{2^m}\) . (2) We determine the differential properties of the Kasami power functions if gcd(k,m) ≠ 1.

Keywords

Maximum nonlinear Gold power function Walsh transform Difference set Finite field Kasami power function Almost perfect nonlinear 

AMS Classifications

05B10 05B25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beth T., Jungnickel D. and Lenz H. (1999). Design, Theory, 2nd ed. Cambridge University Press, Cambridge Google Scholar
  2. 2.
    Bose R.C. (1942). An affine analogue of Singer’s theorem. J. Indian Math. Soc. (N.S.) 6: 1–15 MathSciNetGoogle Scholar
  3. 3.
    Chabaud F., Vaudenay S.: Links between differential and linear cryptanalysis, Santis A.D (ed.) In Advances in cryptology – EUROCRYPT 94, vol. 950 of  Lecture Notes in Computer Science, pp. 356–365 Springer-Verlag, New York, (1995).Google Scholar
  4. 4.
    De Clerck F., Hamilton N., O’Keefe C.M. and Penttila T. (2000). Quasi-quadrics and related structures. Australas. J. Comb. 22: 151–166 MATHMathSciNetGoogle Scholar
  5. 5.
    Dillon J. and Dobbertin H. (2004). New cyclic difference sets with Singer parameters. Finite Fields Appl. 10: 342–389 MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dillon J.F. (1999). Multiplicative difference sets via additive characters. Des. Codes Cryptogr. 17: 225–235 MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Games R.A. (1986). The geometry of quadrics and correlations of sequences. IEEE Trans. Inform Thoery 32: 423–426 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gold R. (1968). Maximal recursive sequences with 3-valued recursive cross-correlation function. IEEE Trans. Inform Thoery 14: 154–156MATHCrossRefGoogle Scholar
  9. 9.
    Golomb S.W. and Gong G. (2005). Signal Design for Good Correlation. Cambridge University Press, Cambridge MATHGoogle Scholar
  10. 10.
    Helleseth T., Kumar P.V.: Sequences with low correlation. In Handbook of Coding Theory, vol. I, II, pp. 1065–1138 North-Holland, Amsterdam (1998).Google Scholar
  11. 11.
    Hirschfeld  J.: Projective Geometries Over Finite Fields, 2nd ed. Oxford Mathematical Monographs. Clarendon Press, Oxford (1998).Google Scholar
  12. 12.
    Kim S.-H., No J.-S., Chung H. and Helleseth T. (2005). New cyclic difference sets constructed from d- homogeneous functions with difference balanced property. IEEE Trans. Inf. Th. 15: 1155–1163 CrossRefMathSciNetGoogle Scholar
  13. 13.
    Langevin P. and Véron P. (2006). On the nonlinearity of power functions. Des. Codes Cryptogr. 37: 31–43 CrossRefGoogle Scholar
  14. 14.
    Lidl R., Niederreiter H.: Finite fields, vol. 20 of Encyclopedia of Mathematics and its Applications, 2nd ed. Cambridge University Press (1997).Google Scholar
  15. 15.
    No J.-S., Chung H. and Yun M.-S. (1998). Binary pseudorandom sequences of period 2m − 1 with ideal autocorrelation generated by the polynomial z d + (z + 1)d. IEEE Trans. Inform Theory 44: 1278–1282MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute for Algebra and GeometryOtto-von-Guericke-University MagdeburgMagdeburgGermany

Personalised recommendations