Advertisement

Designs, Codes and Cryptography

, Volume 41, Issue 1, pp 79–86 | Cite as

A random construction for permutation codes and the covering radius

  • Peter Keevash
  • Cheng Yeaw Ku
Article

Abstract

We analyse a probabilistic argument that gives a semi-random construction for a permutation code on n symbols with distance n − s and size Θ(s!(log n)1/2), and a bound on the covering radius for sets of permutations in terms of a certain frequency parameter.

Keywords

Permutation codes Covering radius Restricted intersections 

AMS Classification

05D40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N, Spencer, J 2000The probabilistic method2Wiley-Interscience [John Wiley & Sons]New YorkMATHCrossRefGoogle Scholar
  2. 2.
    Babai L, Frankl P (1992) Linear algebra methods in combinatorics. Department of Computer Science, University of Chicago, Preliminary versionGoogle Scholar
  3. 3.
    Cameron, PJ, Ku, CY 2003Intersecting families of permutationsEuro J Combin24881890MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Cameron, PJ, Wanless, IM 2005Covering radius for sets of permutationsDisc Math29391109MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Chu, W, Colbourn, CJ, Dukes, P 2004Constructions for permutation codes in powerline communicationsDes Codes Cryptogr325164MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Deza, M, Mrankl, P 1977On the maximum number of permutations with given maximal or minimal distanceJ Combin Theory Ser A22352360CrossRefGoogle Scholar
  7. 7.
    Ding, C, Fu, F-W, Klve, T, Wei, VK-W 2002Constructions of permutation arraysIEEE Trans Inform Theory48977980MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Erdős, P, Ko, C, Rado, R 1961Intersection theorems for systems of finite setsQuart J Math Oxford Ser12313320MathSciNetGoogle Scholar
  9. 9.
    Erdős, P, Spencer, J 1991Lopsided Lovász local lemma and Latin transversalsDisc Appl Math30151154CrossRefGoogle Scholar
  10. 10.
    Frankl, P 1995Extremal set systemsGraham, RLGrotschel, MLovasz, L eds. Handbook of combinatoricsElsevierAmsterdam12931329Google Scholar
  11. 11.
    Fu, F-W, Kløve, T 2004Two constructions of permutation arraysIEEE Trans Inform Theory50881883MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kézdy AE, Snevily HS, unpublished manuscriptGoogle Scholar
  13. 13.
    MacWilliams, FJ, Sloane, NJA 1977The theory of error-correcting codesNorth-HollandAmsterdamMATHGoogle Scholar
  14. 14.
    Pavlidou, N, Vinck, AJH, Yazdani, J, Honary, B 2003Power line communications: state of the art and future trendsIEEE Commun Mag413440CrossRefGoogle Scholar
  15. 15.
    Tarnanen, H 1999Upper bounds on permutation codes via linear programmingEuro J Combin20101114MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of MathematicsCaltech, PasadenaUSA

Personalised recommendations