Designs, Codes and Cryptography

, Volume 40, Issue 1, pp 103–120 | Cite as

Distributed Ring Signatures from General Dual Access Structures



In a distributed ring signature scheme, a subset of users cooperate to compute a distributed anonymous signature on a message, on behalf of a family of possible signing subsets. The receiver can verify that the signature comes from a subset of the ring, but he cannot know which subset has actually signed. In this work we use the concept of dual access structures to construct a distributed ring signature scheme which works with vector space families of possible signing subsets. The length of each signature is linear on the number of involved users, which is desirable for some families with many possible signing subsets. The scheme achieves the desired properties of correctness, anonymity and unforgeability. We analyze in detail the case in which our scheme runs in an identity-based scenario, where public keys of the users can be derived from their identities. This fact avoids the necessity of digital certificates, and therefore allows more efficient implementations of such systems. But our scheme can be extended to work in more general scenarios, where users can have different types of keys.


Distributed ring signatures Dual access structures Provable security Identity based cryptography Random oracle model 

AMS Classification

94A60 68P25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe, M, Ohkubo, M, Suzuki, K 20021-out-of-n signatures from a variety of keysProceedings of Asiacrypt’02, Lecture Notes in Computer Science2501415432MathSciNetGoogle Scholar
  2. 2.
    Abe M, Ohkubo M, Suzuki K (2004). Efficient threshold signer-ambiguous signatures from variety of keys. IEICE Trans Fundamental E87-A (2):471–479Google Scholar
  3. 3.
    Barreto P. The pairing-based crypto lounge. Web page: paulobarreto/pblounge.htmlGoogle Scholar
  4. 4.
    Bellare, M, Boldyreva, A, Palacio, A 2004An uninstantiable random-oracle-model scheme for a hybrid-encryption problemProceedings of Eurocrypt’04, Lecture Notes in Computer Science3027171188MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bellare M, Rogaway P (1993). Random oracles are practical: a paradigm for designing efficient protocols. Proceedings of CCS’93, ACM pp 62–73Google Scholar
  6. 6.
    Bresson, E, Stern, J, Szydlo, M 2002Threshold ring signatures for ad hoc groupsProceedings of Crypt’02, Lecture Notes in Computer Science2442465480MathSciNetGoogle Scholar
  7. 7.
    Brickell, EF 1989Some ideal secret sharing schemesJ Comb Math Comb Comput9105113MathSciNetGoogle Scholar
  8. 8.
    Canetti R, Goldreich O, Halevi S (1998). The random oracle methodology, revisited. Proceedings of STOC’98 pp 209–218Google Scholar
  9. 9.
    Chen, L, Kudla, C, Patterson, KG 2004Concurrent signaturesProceedings of Eurocrypt’04, Lecture Notes in, Computer Science3027287305CrossRefGoogle Scholar
  10. 10.
    Chow, S, Hui, L, Yiu, SM 2005Identity based threshold ring signaturesProceedings of ICISC’04, Lecture Notes in, Computer Science3506218232MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cramer, R, Damgård, I, Schoenmakers, B 1994Proofs of partial knowledge and simplified design of witness hiding protocolsProceedings of Crypto’94, Lecture Notes in Computer Science839174187Google Scholar
  12. 12.
    Dodis, Y, Kiayias, A, Nicolosi, A, Shoup, V 2004Annonymous identification in ad hoc groupsProceedings of Eurocrypt’04, Lecture, Notes in Computer Science3027609626MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fiat, A, Naor, M 1993Broadcast encryptionProceedings of Crypto’93, Lecture Notes in Computer Science773480491Google Scholar
  14. 14.
    Gennaro, R, Jarecki, S, Krawczyk, H, Rabin, T 1996Robust threshold DSS signaturesProceedings of Eurocrypt’96, Lecture Notes in Computer Science1070354371Google Scholar
  15. 15.
    Herranz, J, Sáez, G 2003Forking lemmas for ring signature schemesProceedings of Indocrypt’03, Lecture Notes in ComputerScience2904266279Google Scholar
  16. 16.
    Herranz, J, Sáez, G 2005Ring signature schemes for general access structuresProceedings of ESAS’04, Lecture Notes in Computer Science33135465CrossRefGoogle Scholar
  17. 17.
    Herranz, J, Sáez, G 2004New ID-based ring signature schemesProceedings of ICICS’04, Lecture Notes in Computer Science32692739Google Scholar
  18. 18.
    Laguillaumie, F, Vergnaud, D 2004Multi-designated verifiers signaturesProceedings of ICICS’04, Lecture Notes in Computer Science3269495507Google Scholar
  19. 19.
    Jackson, WA, Martin, KM 1994Geometric secret sharing schemes and their dualsDes Codes Cryptogr48395MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Nielsen, JB 2002Separating random oracle proofs from complexity theoretic proofs: the non-committing encryption caseProceedings of Crypto’02, Lecture Notes in Computer Science2442111126MATHGoogle Scholar
  21. 21.
    Pointcheval, D, Stern, J 2000Security arguments for digital signatures and blind signaturesJ Cryptol,13361396CrossRefMATHGoogle Scholar
  22. 22.
    Rivest, R, Shamir, A, Tauman, Y 2002How to leak a secretProceedings of Asiacrypt’01, Lecture Notes in Computer Science2248552565MathSciNetGoogle Scholar
  23. 23.
    Shamir, A 1979How to share a secretCommun ACM22612613MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Shamir, A 1984Identity-based cryptosystems and signature schemesProceedings of Crypto’84, Lecture Notes in Computer Science1964753MathSciNetGoogle Scholar
  25. 25.
    Shoup, V 2000Practical threshold signaturesProceedings of Eurocrypt’00, Lecture Notes in Computer Science1807207220MATHGoogle Scholar
  26. 26.
    Simmons, GJ, Jackson, W, Martin, K 1991The geometry of secret sharing schemesBull ICA17188MathSciNetMATHGoogle Scholar
  27. 27.
    Stinson, DR 1995Cryptography: theory and practiceCRC Press Inc.Boca RatonMATHGoogle Scholar
  28. 28.
    Sui Liu, JK, Wei, VK, Wong, DS 2004A separable threshold ring signature schemeProceedings of ICISC’03, Lecture Notes in Computer Science29711226Google Scholar
  29. 29.
    Wei VK (2004). A bilinear spontaneous anonymous threshold signature for ad hoc groups. Manuscript available at Scholar
  30. 30.
    Zhang, F, Kim, K 2002ID-based blind signature and ring signature from pairingsProceedings of Asiacrypt’02, Lecture Notes in Computer Science2501533547MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Centrum voor Wiskunde en Informatica (CWI)AmsterdamThe Netherlands
  2. 2.Dept. Matemàtica Aplicada IVUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations