Designs, Codes and Cryptography

, Volume 35, Issue 2, pp 211–225 | Cite as

On Goppa Codes and Weierstrass Gaps at Several Points



We generalize results of Homma and Kim [J. Pure Appl. Algebra Vol. 162, (2001), pp. 273–290] concerning an improvement on the Goppa bound on the minimum distance of certain Goppa codes.


error correcting codes goppa codes weierstrass gaps at several points gonality sequence of curves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, Geometry of Algebraic Curves, Vol. I, Springer-Verlag (1985).Google Scholar
  2. Ballico, E., Kim, S. J. 1998Weierstrass multiple loci of n-pointed algebraic curvesJ. Algebra199455471Google Scholar
  3. Delgado, F. 1990The symmetry of the Weierstrass generalized semigroups and affine embeddingsProc. Amer. Math. Soc.108627631Google Scholar
  4. Fuhrmann, R., Torres, F. 1996The genus of curves over finite fields with many rational pointsManuscripta Math.89103106Google Scholar
  5. Garcia, A., Kim, S. J., Lax, R. 1993Consecutive Weierstrass gaps and minimum distance of Goppa codesJ. Pure Appl. Algebra84199207Google Scholar
  6. A. Garcia and R. Lax, Goppa codes and Weierstrass gaps, Coding theory and algebraic geometry, Lectures Notes in Mathematics, Vol. 1518 Springer-Verlag, Berlin–Heidelberg (1992) pp. 33–42.Google Scholar
  7. Garcia, A., Viana, P. 1986Weierstrass points on certain non-classical curvesArch. Math.46315322Google Scholar
  8. Garcia, A., Voloch, J. F. 1988Fermat curves over finite fieldsJ. Number Theory30345356Google Scholar
  9. V. D. Goppa, Algebraic-Geometric codes, Math. USRR-Izv., Vol. 21(1) (1983) pp. 75–93. Google Scholar
  10. V. D. Goppa, Geometry and Codes, Kluwer Academic Publishers (1983).Google Scholar
  11. Homma, M. 1996The Weierstrass semigroup of a pair of points on a curveArch. Math.67337348Google Scholar
  12. Homma, M., Kim, S. J. 2001Goppa codes with Weierstrass pairsJ. Pure Appl. Algebra162273290Google Scholar
  13. Ishii, N. 1999A certain graph obtained from a set of several points on a Riemann surfaceTsukuba J. Math.235589Google Scholar
  14. Kim, S. J. 1994On the index of the Weierstrass semigroup of a pair of points on a curveArch. Math.627382Google Scholar
  15. S. J. Kim and J. Komeda, The Weierstrass semigroup of a pair of Galois Weierstrass points with prime degree on a curve, Preprint (2001).Google Scholar
  16. Matthews, G. L. 2001Weierstrass pairs and minimum distance of Goppa codesDes. Codes Cryptogr.22107221Google Scholar
  17. R. Pellikaan, On special divisors and the two variable zeta function of algebraic curves over finite fields, Proceedings AGCT-4, Luminy, Pellikaan, Perret, Vladut, (eds), (1997) pp. 175–184. Google Scholar
  18. Stichtenoth, H. 1988A note on Hermitian codes over GF(q2)IEEE Trans. Inform. Theory3413451348Google Scholar
  19. K. Yang and P.V. Kumar, On the true minimum distance of Hermitian codes, ‘‘Coding theory and algebraic geometry’’, Lectures Notes in Mathematics, Vol. 1518, Springer-Verlag, Berlin-Heidelberg (1992) pp. 99–107. Google Scholar
  20. K. Yang, P. V. Kumar and H. Stichtenoth, On the weight hierarchy of geometric Goppa codes, IEEE Trans. Inform. Theory, Vol. 40(3) (1994) pp. 913–920.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Faculdade de MatemáticaUniversidade Federal de UberlândiaUberlândia – MGBrasil
  2. 2.IMECC-UNICAMPCampinasBrazil
  3. 3.Departamento de Algebra, Geometría y TopologíaFacultad de Ciencias – Universidad de ValladolidValladolidSpain

Personalised recommendations