Designs, Codes and Cryptography

, Volume 39, Issue 3, pp 387–396 | Cite as

Bounds on Codes Derived by Counting Components in Varshamov Graphs

  • Katie M. O’Brien
  • Patrick Fitzpatrick


We are interested in improving the Varshamov bound for finite values of length n and minimum distance d. We employ a counting lemma to this end which we find particularly useful in relation to Varshamov graphs. Since a Varshamov graph consists of components corresponding to low weight vectors in the cosets of a code it is a useful tool when trying to improve the estimates involved in the Varshamov bound. We consider how the graph can be iteratively constructed and using our observations are able to achieve a reduction in the over-counting which occurs. This tightens the lower bound for any choice of parameters n, k, d or q and is not dependent on information such as the weight distribution of a code.


Varshamov bound Varshamov graph Greedy codes 

AMS Classfication

94B65 94B25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barg, A, Guritman, S, Simonis, J 2000Strengthening the Gilbert–Varshamov boundLinear Algebra Appl307119129CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bierbrauer J (2004) Introduction to coding theory. Chapman and HallGoogle Scholar
  3. 3.
    Brualdi, RA, Pless, V 1993Greedy codesJ Combinat Theory, Series A641030MathSciNetGoogle Scholar
  4. 4.
    Brouwer AE (1998) Bounds on the size of linear codes. In: Pless V, Huffman W (eds), Handbook of coding theory Elsevier Science Online version of the tables:
  5. 5.
    Conway, J, Sloane, NJA 1986Lexicographic codes: error correcting codes from game theoryIEEE Trans Inform Theory32337347CrossRefMathSciNetGoogle Scholar
  6. 6.
    Edel Y (1996). Eine Verallgemeinerung von BCH-codes. PhD thesis, Univ. HeidelbergGoogle Scholar
  7. 7.
    Edel, Y, Bierbrauer, J 1997Lengthening and the Gilbert-Varshamov boundIEEE Trans Inform Theory43991992CrossRefMathSciNetGoogle Scholar
  8. 8.
    Gilbert, EN 1952A comparison of signalling alphabetsBell Syst Tech J.31504522Google Scholar
  9. 9.
    Hashim, AA 1978Improvement on Varshamov-Gilbert lower bound on minimum Hamming distance of linear codesProc Inst Eng.125104106MathSciNetGoogle Scholar
  10. 10.
    O’Brien K (2003). Constructions and properties of greedy codes. PhD Thesis, Department of Mathematics, University College CorkGoogle Scholar
  11. 11.
    Pless, VHuffman, WC eds. 1998Handbook of coding theoryElsevier ScienceAmsterdamGoogle Scholar
  12. 12.
    Varshamov, RR 1957Estimate of the number of signals in error correcting codesDokl Acad Nauk SSSR117739741MATHGoogle Scholar
  13. 13.
    Zanten, AJ 1997Lexicographic order and linearityDes Codes Cryptogr108597CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    van Zanten AJ, Monroe L, Lukito A Dimensions of Standard Lexicodes, Report 96-66, Technische Universiteit DelftGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Engineering MathematicsUniversity of BristolEngland
  2. 2.Department of MathematicsUniversity College CorkIreland

Personalised recommendations