Advertisement

Designs, Codes and Cryptography

, Volume 37, Issue 3, pp 449–464 | Cite as

Piecewise Constructions of Bent and Almost Optimal Boolean Functions

  • Claude Carlet
  • Joseph L. Yucas
Article

Abstract

The first aim of this work was to generalize the techniques used in MacWilliams’ and Sloane’s presentation of the Kerdock code and develop a theory of piecewise quadratic Boolean functions. This generalization led us to construct large families of potentially new bent and almost optimal functions from quadratic forms in this piecewise fashion. We show how our motivating example, the Kerdock code, fits into this setting. These constructions were further generalized to non-quadratic bent functions. The resulting constructions design n-variable bent (resp. almost optimal) functions from n-variable bent or almost optimal functions.

Keywords

quadratic forms finite fields codes bent functions 

AMS Classification

11T71 94A60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. F. Assmus and J. D. Key, Designs and their Codes, Cambridge University Press, Cambridge.Google Scholar
  2. 2.
    Berlekamp, E. 1968Algebraic Coding TheoryMcGraw-HillNew YorkGoogle Scholar
  3. 3.
    Boztas, S., Kumar, P. V. 1994Binary sequences with Gold-like correlation but large linear spanIEEE Trans. Inform. Theory40532537CrossRefGoogle Scholar
  4. 4.
    Canteaut, A., Carlet, C., Charpin, P., Fontaine, C. 2001On cryptographic properties of the cosets of R(1,m)IEEE Trans. Inform. Theory4714941513CrossRefGoogle Scholar
  5. 5.
    A. Canteaut and P. Charpin, Decomposing bent functions. In Proc. 2002 IEEE International Symposium on Information Theory, Lausanne, 2002. And IEEE Transactions on Information Theory Vol. 49 (2003) pp. 2004–2019.Google Scholar
  6. 6.
    C. Carlet, Partially bent functions, Designs Codes Cryptography, Vol. 3, (1993) pp. 135–145 and proceedings of CRYPTO’ 92, Advances in Cryptology, Lecture Notes in Computer Science 740, Springer Verlag, Berlin (1993) pp. 280–291.Google Scholar
  7. 7.
    Carlet, C. 1994Two new classes of bent functions, EUROCRYPT’ 93, Advances in Cryptology, Lecture Notes in Computer Science 765Springer-VerlagBerlin77101Google Scholar
  8. 8.
    Carlet, C. 1995Generalized partial spreadsIEEE Trans. Inform. Theory4114821487CrossRefGoogle Scholar
  9. 9.
    Carlet, C. 1996A construction of bent functions. Finite Fields and Applications, London Mathematical Society, Lecture Series 233Cambridge University PressCambridge4758Google Scholar
  10. 10.
    C. Carlet, More correlation-immune and resilient functions over Galois fields and Galois rings. Advances in Cryptology, EUROCRYPT’ 97, Lecture Notes in Computer Science 1233, Springer-Verlag, (1997) pp. 422–433.Google Scholar
  11. 11.
    Carlet, C. 1999Recent results on binary bent functionsInternational Conference on Combinatorics, Information Theory and Statistics; Journal of Combinatorics, Information and System Sciences24275291Google Scholar
  12. 12.
    C. Carlet, On Kerdock codes, American Mathematical Society (Proceedings of the conference Finite Fields and Applications Fq4) Contemporary Mathematics 225, (1999) pp. 155–163.Google Scholar
  13. 13.
    Carlet, C. 2004On the confusion and diffusion properties of Maiorana-McFarland’s and extended Maiorana–McFarland’s functionsJournal of Complexity20182204dedicated to Prof. Harald Niederreiter on the occasion of his 60th birthdayCrossRefGoogle Scholar
  14. 14.
    C. Carlet. On the secondary constructions of resilient and bent functions. Proceedings of “Coding, Cryptography and Combinatorics”, Progress in Computer Science and Applied Logic, Vol. 23, Birkhäuser Verlag, Basel, (2004) pp. 3–28.Google Scholar
  15. 15.
    Carlet, C., Dobbertin et, H., Leander, G. 2004Normal extensions of bent functionsIEEE Trans. Inform. Theory5028802885CrossRefMathSciNetGoogle Scholar
  16. 16.
    C. Carlet and E. Prouff, On plateaued Boolean functions and their constructions, In Proc. of “Fast Software Encryption 2003”, Lecture Notes in Computer Science, Vol. 2887 (2003) pp. 54–73.Google Scholar
  17. 17.
    P. Delsarte and J. Goethals, Irreducible binary codes of even dimension, In 1970 Proc. Second Chapel Hill Conference on Combinatorial Mathematics and its Applications, Univ. North Carolina, Chapel Hill, NC (1970) pp. 100–113.Google Scholar
  18. 18.
    Detombe, J., Tavares, S. 1993Constructing large cryptographically strong S-boxes, Advances in Cryptology-AUSCRYPT’92Springer-VerlagBerlin, Heidelberg, New YorkGoogle Scholar
  19. 19.
    J. F. Dillon, Elementary Hadamard Difference sets. Ph. D. Thesis, Univ. of Maryland (1974).Google Scholar
  20. 20.
    J. F. Dillon, Elementary Hadamard difference sets, In Proc. Sixth S-E Conf. Comb. Graph Theory and Comp., F. Hoffman et al. (Eds), Winnipeg Utilitas Math, (1975) pp. 237–249.Google Scholar
  21. 21.
    H. Dobbertin, Construction of bent functions and balanced Boolean functions with high nonlinearity. Fast Software Encryption, Second International Workshop, Lecture Notes in Computer Science 1008, (1995) pp. 61–74.Google Scholar
  22. 22.
    X.-D. Hou. New constructions of bent functions, International Conference on Combinatorics, Information Theory and Statistics; Journal of Combinatorics, Information and System Sciences, Vol. 24, No. 3–4 pp. 275–291.Google Scholar
  23. 23.
    Fitzgerald, R., Yucas, J. 2004Pencils of quadratic forms over finite fieldsDiscrete Mathematics2837179CrossRefGoogle Scholar
  24. 24.
    Gold, R. 1968Maximal recursive sequences with 3-valued cross correlation functionsIEEE Trans. Inform. Theory14154156CrossRefGoogle Scholar
  25. 25.
    Geer, G., Vlugt, M. 1996Quadratic forms, generalized Hamming weights of codes and curves with many pointsJ. Number Theory592036CrossRefGoogle Scholar
  26. 26.
    Helleseth, T., Kumar, P.V. 1998Sequences with low correlationPless, V.Huffman, C. eds. Handbook of Coding Theory.Elsevier Science PublishersAmsterdamGoogle Scholar
  27. 27.
    Hou, X. -D. 1999New constructions of bent functionsInternational Conference on Combinatorics, Information Theory and Statistics; Journal of Combinatorics, Information and System Sciences24275291Google Scholar
  28. 28.
    Hou, X. -D., Langevin, P. 1997Results on bent functionsJ. Combin. Theory, Series A80232246Google Scholar
  29. 29.
    Khoo, K., Gong, G., Stinson, D. 2002New families of Gold-like sequencesIEEE Int. Symp. Inform. Theory 0212281Google Scholar
  30. 30.
    A. Lempel and M. Cohn, Maximal families of bent sequences, IEEE Trans. Infor. Theory, IT-28 No. 6 (1982) pp. 865–868.Google Scholar
  31. 31.
    Lidl, R., Niederreiter, H. 1997Finite fieldsCambridge University PressCambridgeGoogle Scholar
  32. 32.
    MacWilliams, F., Sloane, N. 1977The Theory of Error Correcting CodesNorth HollandAmsterdam/New York/OxfordGoogle Scholar
  33. 33.
    J. D. Olsen, R. A. Scholtz and L. R. Welch, Bent function sequences, IEEE Trans. Inform. Theory, IT-28 No. 6, (1982) pp. 858–864.Google Scholar
  34. 34.
    Rothaus, O. S. 1976On bent functionsJ. Comb. Theory, Ser A20300305Google Scholar
  35. 35.
    Simon, M., Omura, J., Scholtz, R., Levitt, B. 1985Spread-Spectrum CommunicationsComputer Science PressRock Ville, MDVol. 1Google Scholar
  36. 36.
    Wolfman, J. 1975Formes quadratiques et codes a deux poidsC. R. Acad. Sci. Paris Ser. A-B281533535Google Scholar
  37. 37.
    Y. Zheng and X. M. Zhang, Plateaued functions. ICICS’99, Lecture Notes in Computer Science, Vol. 1726. Heidelberg, Ed., Springer-Verlag, (1999) pp. 284–300.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.INRIA, Domaine de VoluceauRocquencourt, University of Paris 8CedexFrance
  2. 2.Department of MathematicsSouthern Illinois UniversityCarbondaleUSA

Personalised recommendations