Designs, Codes and Cryptography

, Volume 39, Issue 2, pp 215–231 | Cite as

Improvements on Generalized Hamming Weights of Some Trace Codes

  • Cem Güneri
  • Ferruh Özbudak


We obtain improved bounds for the generalized Hamming weights of some trace codes which include a large class of cyclic codes over any finite field. In particular, we improve the corresponding bounds of Stichtenoth and Voss [8] using various methods altogether.


trace codes cyclic codes divisibility generalized Hamming weights algebraic function field 

AMS Classification

94B27 11R58 11T71 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ax, J. 1964Zeroes of polynomials over finite fieldsAmer. J. Math.86255261MATHMathSciNetGoogle Scholar
  2. 2.
    Delsarte, P., McEliece, R. J. 1976Zeroes of functions in finite abelian group algebrasAmer. J. Math.98197224MathSciNetGoogle Scholar
  3. 3.
    I. Duursma, H. Stichtenoth and C. Voss, Generalized Hamming weights for duals of BCH, and maximal algebraic function fields, In (R. Pellikaan, M. Perret and S.G. Vlăduţ eds.), Arithmetic Geometry and Coding Theory, (1996) pp. 53–65.Google Scholar
  4. 4.
    Garcia, A., Stichtenoth, H. 1991Elementary abelian p-extensions of algebraic function fieldsManuscripta Math726779MathSciNetGoogle Scholar
  5. 5.
    Özbudak, F. 2005Elements of prescribed order, prescribed traces and systems of rational functions over finite fieldsDes. Codes Cryptogr.343554CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Moreno, O., Pedersen, J.P., Polemi, D. 1998An improved Serre bound for elementary abelian extensions of \(\mathbb{F}_{q^{(x)}}\) and the generalized Hamming weights of duals of BCH codesIEEE Trans. Inform. Theory4412911293CrossRefMathSciNetGoogle Scholar
  7. 7.
    Stichtenoth, H. 1993Algebraic Function Fields and CodesSpringerBerlinGoogle Scholar
  8. 8.
    Stichtenoth, H., Voss, C. 1994Generalized Hamming weights of trace codesIEEE Trans. Inform. Theory40554558CrossRefMathSciNetGoogle Scholar
  9. 9.
    Wei, V. K. 1991Generalized Hamming weights of linear codesIEEE Trans. Inform. Theory3714121418CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    J. Wolfmann, New bounds on cyclic codes from algebraic curves, In Lecture Notes in Computer Science, Vol. 388, Springer-Verlag, New York. (1988) pp. 47–62.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Faculty of Engineering and Natural SciencesSabancı UniversityİstanbulTurkey
  2. 2.Department of MathematicsMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations